Minor histocompatibility antigens (MiHA) selectively expressed by haematopoietic cells are attractive targets for specific immunotherapy after allogeneic stem cell transplantation (SCT). Previously, we described LRH-1 as a haematopoietic-lineage restricted MiHA that is capable of eliciting an allogeneic cytotoxic T-lymphocyte (CTL) response after SCT and donor lymphocyte infusion. Importantly, the gene encoding LRH-1, P2X5, is not expressed in prominent graft-versus-host-disease target tissues such as skin, liver and gut.
View Article and Find Full Text PDFMinor histocompatibility antigens (mHAgs) constitute the target antigens of the T cell-mediated graft-versus-leukemia response after HLA-identical allogeneic stem cell transplantation (SCT). Several human mHAgs have been identified, but only a few are selectively expressed by hematopoietic cells representing potential targets for specific immunotherapy. Molecular approaches including cDNA library screening and genetic linkage analysis have been successfully applied to identify T cell-defined mHAgs, but each approach has its drawbacks which may lead to mis-identification of the mHAg of interest.
View Article and Find Full Text PDFMinor histocompatibility antigens (mHAgs) constitute the targets of the graft-versus-leukemia response after HLA-identical allogeneic stem cell transplantation. Here, we have used genetic linkage analysis to identify a novel mHAg, designated lymphoid-restricted histocompatibility antigen-1 (LRH-1), which is encoded by the P2X5 gene and elicited an allogeneic CTL response in a patient with chronic myeloid leukemia after donor lymphocyte infusion. We demonstrate that immunogenicity for LRH-1 is due to differential protein expression in recipient and donor cells as a consequence of a homozygous frameshift polymorphism in the donor.
View Article and Find Full Text PDFTumor relapses in patients with precursor B-cell acute lymphoblastic leukemia (BALL) occur frequently after primary treatment. Therefore, development of additional treatment modalities to eliminate residual tumor cells is needed. Active immunotherapy using dendritic cells (DCs) loaded with tumor-associated antigens is a promising approach to induce specific T-cell immunity in patients with cancer.
View Article and Find Full Text PDFHuman minor histocompatibility antigens (mHag) are target antigens of the graft-versus-leukemia response observed after allogeneic HLA-identical stem cell transplantation. We previously defined the molecular nature of the B cell lineage-specific mHag HB-1. The CTL epitope was identified as the decamer peptide EEKRGSLHVW presented in the context of HLA-B44.
View Article and Find Full Text PDF