Publications by authors named "Bjorn Vergauwen"

The rapid developments in biofabrication, in particular 3D bioprinting, in the recent years have facilitated the need for novel biomaterials that aim to replicate the target tissue in great detail. The presence of endotoxins in these biomaterials is often an overlooked problem. In pre-clinical 3D in vitro models, endotoxins can have significant influence on cell behavior and credibility of the model.

View Article and Find Full Text PDF

Rationale: It is important to investigate the behavior of protein hydrolysate components in both in vitro and in vivo studies, to support the elucidation of their biological functions. As protein hydrolysates and biological matrices are highly complex mixtures, it is essential to apply fully reliable and flexible analytical approaches.

Methods: A novel and generic Liquid Chromatography/Mass Spectrometry methodology was developed to analyze short peptides.

View Article and Find Full Text PDF

In this study, we report on the influence of mechanochemical activation on the chemical stability of amorphous solid dispersions made up of indomethacin and hydroxypropyl methyl cellulose (HPMC), poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone vinylacetate) (PVPVA), or Soluplus. In agreement with our recently published work, all applied carriers were found to be prone to polymer degradation. Covalent bonds within the polymers were cleaved and mechanoradicals were generated.

View Article and Find Full Text PDF

In this work, a chemical (and physical) evaluation of cryogenic milling to manufacture amorphous solid dispersions (ASDs) is provided to support novel mechanistic insights in the cryomilling process. Cryogenic milling devices are considered as reactors in which both physical transitions (reduction in crystallite size, polymorphic transformations, accumulation of crystallite defects, and partial or complete amorphization) and chemical reactions (chemical decomposition, etc.) can be mechanically triggered.

View Article and Find Full Text PDF

Amorphous solid dispersions (ASDs) are single-phase amorphous systems, where drug molecules are molecularly dispersed (dissolved) in a polymer matrix. The molecular dispersion of the drug molecules is responsible for their improved dissolution properties. Unambiguously establishing the phase behavior of the ASDs is of utmost importance.

View Article and Find Full Text PDF

In order to further explain the ability of gelatin 50PS and bovine serum albumin (BSA) to generate supersaturation of a series of poorly soluble drugs (carbamazepine, cinnarizine, diazepam, itraconazole, nifedipine, indomethacin, darunavir (ethanolate), ritonavir, fenofibrate, griseofulvin, ketoconazole, naproxen, phenylbutazone and phenytoin), drug-polymer binding was investigated using solution NMR and equilibrium dialysis experiments. Binding characteristics of the biopolymers were compared to those of PVP, PVPVA and HPMC. Since both biopolymers are prone to enzymatic digestion, we evaluated the influence of proteolytic enzymes like pepsin and pancreatin on the dissolution properties of poorly soluble compounds when formulated as amorphous solid dispersions with gelatin 50PS and BSA.

View Article and Find Full Text PDF

Gelatin and bovine serum albumin (BSA), two readily available biopolymers, were examined for their effect on solubility and supersaturation of drugs because of their capacity to interact with drugs (e.g. via hydrogen bonding, van der Waals or electrostatic interactions, etc.

View Article and Find Full Text PDF

Biopolymers have rarely been used so far as carriers in the formulation of amorphous solid dispersions (ASD) to overcome poor solubility of active pharmaceutical ingredients (APIs). In an attempt to enlarge our knowledge on this topic, gelatin, type 50PS was selected. A screening study was initiated in which twelve structurally different poorly soluble biopharmaceutical classification system (BCS) Class II drugs (carbamazepine, cinnarizine, diazepam, itraconazole, nifedipine, indomethacin, darunavir (ethanolate), ritonavir, fenofibrate, griseofulvin, ketoconazole and naproxen) were selected for evaluation.

View Article and Find Full Text PDF

Bacterial endotoxins have high immunogenicity. Phage biology studies as well as therapeutic phage applications necessitate highly purified phage particles. In this study, we compared combinations of seven different endotoxin removal strategies and validated their endotoxin removal efficacy for five different phages (i.

View Article and Find Full Text PDF

Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive.

View Article and Find Full Text PDF

Nearly all bacteria exhibit a type of phenotypic growth described as persistence that is thought to underlie antibiotic tolerance and recalcitrant chronic infections. The chromosomally encoded high-persistence (Hip) toxin-antitoxin proteins HipASO and HipBSO from Shewanella oneidensis, a proteobacterium with unusual respiratory capacities, constitute a type II toxin-antitoxin protein module. Here we show that phosphorylated HipASO can engage in an unexpected ternary complex with HipBSO and double-stranded operator DNA that is distinct from the prototypical counterpart complex from Escherichia coli.

View Article and Find Full Text PDF

Glutathione (GSH) protects cells against oxidative injury and maintains a range of vital functions across all branches of life. Despite recent advances in our understanding of the transport mechanisms responsible for maintaining the spatiotemporal homeostasis of GSH and its conjugates in eukaryotes and Gram-negative bacteria, the molecular and structural basis of GSH import into Gram-positive bacteria has remained largely uncharacterized. Here, we employ genetic, biochemical and structural studies to investigate a possible glutathione import axis in Streptococcus mutans, an organism that has hitherto served as a model system.

View Article and Find Full Text PDF

The discovery that hematopoietic human colony stimulating factor-1 receptor (CSF-1R) can be activated by two distinct cognate cytokines, colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34), created puzzling scenarios for the two possible signaling complexes. We here employ a hybrid structural approach based on small-angle X-ray scattering (SAXS) and negative-stain EM to reveal that bivalent binding of human IL-34 to CSF-1R leads to an extracellular assembly hallmarked by striking similarities to the CSF-1:CSF-1R complex, including homotypic receptor-receptor interactions. Thus, IL-34 and CSF-1 have evolved to exploit the geometric requirements of CSF-1R activation.

View Article and Find Full Text PDF

Short-chain dehydrogenases/reductases (SDRs) encompass a large and functionally diverse family of enzymes with representative members in all kingdoms of life. Despite the wealth of reactions catalyzed by SDRs, they operate through a well-conserved and efficient reaction mechanism centered in a conserved catalytic tetrad (Asn-Ser-Tyr-Lys) and the employment of an appropriate cofactor. In recent years, SDRs that lack the signature catalytic tetrad have been identified, thus adding a perplexing twist to SDR functionality.

View Article and Find Full Text PDF

Hematopoietic human colony-stimulating factor 1 (hCSF-1) is essential for innate and adaptive immunity against viral and microbial infections and cancer. The human pathogen Epstein-Barr virus secretes the lytic-cycle protein BARF1 that neutralizes hCSF-1 to achieve immunomodulation. Here we show that BARF1 binds the dimer interface of hCSF-1 with picomolar affinity, away from the cognate receptor-binding site, to establish a long-lived complex featuring three hCSF-1 at the periphery of the BARF1 toroid.

View Article and Find Full Text PDF

Short-chain dehydrogenases/reductases (SDRs) are a rapidly expanding superfamily of enzymes that are found in all kingdoms of life. Hallmarked by a highly conserved Asn-Ser-Tyr-Lys catalytic tetrad, SDRs have a broad substrate spectrum and play diverse roles in key metabolic processes. Locus tag VVA1599 in Vibrio vulnificus encodes a short-chain dehydrogenase (hereafter referred to as SDRvv) which lacks the signature catalytic tetrad of SDR members.

View Article and Find Full Text PDF

Glutathione is an intracellular redox-active tripeptide thiol with a central role in cellular physiology across all kingdoms of life. Glutathione biosynthesis has been traditionally viewed as a conserved process relying on the sequential activity of two separate ligases, but recently, an enzyme (GshF) that unifies both necessary reactions in one platform has been identified and characterized in a number of pathogenic and free-living bacteria. Here, we report crystal structures of two prototypic GshF enzymes from Streptococcus agalactiae and Pasteurella multocida in an effort to shed light onto the structural determinants underlying their bifunctionality and to provide a structural framework for the plethora of biochemical and mutagenesis studies available for these enzymes.

View Article and Find Full Text PDF

The hematopoietic colony stimulating factor-1 receptor (CSF-1R or FMS) is essential for the cellular repertoire of the mammalian immune system. Here, we report a structural and mechanistic consensus for the assembly of human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts and striking structural plasticity at the extremities of the complex.

View Article and Find Full Text PDF

Background: The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of Escherichia coli. The solute binding protein (SBP) that mediates glutathione transport in H.

View Article and Find Full Text PDF

The class III receptor tyrosine kinase (RTKIII) Fms-like tyrosine kinase receptor 3 (Flt3) and its cytokine ligand (FL) play central roles in hematopoiesis and the immune system, by establishing signaling cascades crucial for the development and homeostasis of hematopoietic progenitors and antigen-presenting dendritic cells. However, Flt3 is also one of the most frequently mutated receptors in hematologic malignancies and is currently a major prognostic factor and clinical target for acute myeloid leukemia. Here, we report the structural basis for the Flt3 ligand-receptor complex and unveil an unanticipated extracellular assembly unlike any other RTKIII/V complex characterized to date.

View Article and Find Full Text PDF

Glutathione (GSH) is a vital intracellular cysteine-containing tripeptide across all kingdoms of life and assumes a plethora of cellular roles. Such pleiotropic behavior relies on a finely tuned spatiotemporal distribution of glutathione and its conjugates, which is not only controlled by synthesis and breakdown, but also by transport. Here, we show that import of glutathione in the obligate human pathogen Haemophilus influenzae, a glutathione auxotrophe, is mediated by the ATP-binding cassette (ABC)-like dipeptide transporter DppBCDF, which is primed for glutathione transport by a dedicated periplasmic-binding protein (PBP).

View Article and Find Full Text PDF

Shewanella oneidensis, a Gram-negative bacterium with unusual respiratory versatility, is found in soil and sediment environments, and sporadically as an opportunistic pathogen in humans and aquatic animals. The ability to form biofilms is a critical factor in the environmental spread and survival of this bacterium. We subjected S.

View Article and Find Full Text PDF

Type I secretion systems (TISS) are associated with the virulence of Gram-negative bacteria and the secretion of pathogenic molecular determinants. The Shewanella oneidensis MR-1 outer-membrane protein AggA is part of a TISS. Recombinant AggA expressed in Escherichia coli as inclusion bodies can be efficiently refolded in vitro, and can form active channel-tunnels as shown by proteoliposome swelling assays and electrophysiological measurements in lipid bilayers.

View Article and Find Full Text PDF

Glutathione reductase (GR) plays a vital role in maintaining the antioxidant levels of the cytoplasm by catalyzing the reduction of glutathione disulfide to reduced glutathione, thereby using NADPH and flavin adenine dinucleotide as cofactors. Chromatiaceae have evolved an unusual homolog that prefers both a modified substrate (glutathione amide disulfide [GASSAG]) and a different cofactor (NADH). Herein, we present the crystal structure of the Chromatium gracile glutathione amide reductase (GAR) both alone and in complex with NAD(+).

View Article and Find Full Text PDF