Rapid expression of recombinant proteins for structure determination is one of the major challenges in pharmaceutical and academic research, since the number of potential drug targets has increased significantly in the last decade. Despite the fact that the baculovirus expression vector system is widely used for this purpose, the system is hampered by three very slow and tedious procedures, namely generation of high titer baculovirus stock, determination of the virus titer and discovery of the best conditions for protein expression. We herein describe the development of the ultraBac system to address and overcome these issues for protein expression in insect cells.
View Article and Find Full Text PDFSince the number of potential drug targets identified has significantly increased in the past decade, rapid expression of recombinant proteins in sufficient amounts for structure determination and modern drug discovery is one of the major challenges in pharmaceutical research. As a result of its capacity for insertion of large DNA fragments, its high yield of recombinant protein and its high probability of success compared to protein expression in Escherichia coli, the baculovirus expression vector system (BEVS) is used routinely to produce recombinant proteins in the milligram scale. For some targets, however, expression of the recombinant protein with the BEVS in insect cells fails and mammalian expression systems have to be used to achieve proper post-translational processing of the nascent polypeptide.
View Article and Find Full Text PDFRecombinant baculoviruses derived from the Autographa californica nuclear polyhedrosis virus (AcNPV) are widely used to express heterologous genes in insect cells, but the use of the baculovirus expression vector system (BEVS) is hampered by slow and tedious procedures for the selection and separation of baculovirus-infected insect cells and for titer determination. Here we developed a new technology based on the bicistronic vector with a fusion protein of the human integral plasma membrane glycoprotein CD4 and green fluorescent protein (GFP) for concomitant expression of target proteins in insect Sf21 cells. Magnetic cell sorting (MACS) technology with anti-CD4 antibody-labeled superparamagnetic beads was used to separate the baculovirus-infected from the noninfected insect cells and therefore to increase the virus titer and to reduce process time.
View Article and Find Full Text PDFFluorescence resonance energy transfer (FRET) was used to establish a novel in vivo screening system that allows rapid detection of protein folding and protein variants with increased thermodynamic stability in the cytoplasm of Escherichia coli. The system is based on the simultaneous fusion of the green fluorescent protein (GFP) to the C terminus of a protein X of interest, and of blue-fluorescent protein (BFP) to the N terminus of protein X. Efficient FRET from BFP to GFP in the ternary fusion protein is observed in vivo only when protein X is folded and brings BFP and GFP into close proximity, while FRET is lost when BFP and GFP are far apart due to unfolding or intracellular degradation of protein X.
View Article and Find Full Text PDFDsbA from Escherichia coli is the most oxidizing member of the thiol-disulfide oxidoreductase family (E(o)' = -122 mV) and is required for efficient disulfide bond formation in the periplasm. The reactivity of the catalytic disulfide bond (Cys(30)-Pro(31)-His(32)-Cys(33)) is primarily due to an extremely low pK(a) value (3.4) of Cys(30), which is stabilized by the partial positive dipole charge of the active-site helix alpha1 (residues 30-37).
View Article and Find Full Text PDF