Publications by authors named "Bjorn F C Kafsack"

The transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is the rate-limiting step in ribosome biogenesis and a major determinant of cellular growth rates. Unlike other eukaryotes, which express identical rRNA from large tandem arrays of dozens to hundreds of identical rRNA genes in every cell, the genome of the human malaria parasite contains only a handful single-copy 47S rRNA loci that differ substantially from one another in length, sequence, and expression in different cell types. We found that the growth of the malaria parasite was acutely sensitive to the Pol I inhibitors 9-hydroxyellipticine and BMH-21 and demonstrated that they greatly reduce the transcription of 47S rRNAs as well as the transcription of other non-coding RNA genes.

View Article and Find Full Text PDF

Transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is the rate-limiting step in ribosome biogenesis and a major determinant of cellular growth rates. Unlike virtually every other eukaryote, which express identical rRNA from large tandem arrays of dozens to hundreds of identical rRNA genes in every cell, the genome of the human malaria parasite contains only a handful single-copy 47S rRNA loci that differ substantially from one another in length, sequence and expression in different cell-types. We found that growth of malaria parasite was acutely sensitive to the Pol I inhibitors 9-hydroxyellipticine and BMH-21 and demonstrate that they greatly reduce the transcription of 47S rRNAs as well as transcription of other non-coding RNA genes.

View Article and Find Full Text PDF

Chronic, asymptomatic malaria infections contribute substantially to disease transmission and likely represent the most significant impediment preventing malaria elimination and eradication. parasites evade antibody recognition through transcriptional switching between members of the gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. This process can extend infections for up to a year; however, infections have been documented to last for over a decade, constituting an unseen reservoir of parasites that undermine eradication and control efforts.

View Article and Find Full Text PDF

The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors.

View Article and Find Full Text PDF

For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown.

View Article and Find Full Text PDF

The primary antigenic and virulence determinant of the human malaria parasite is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called , and switching between active genes enables the parasites to evade the antibody response of their human hosts. gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence.

View Article and Find Full Text PDF

Most commercial products cannot be used for clearance of contamination from cultures of apicomplexan parasites due to the parasites' dependence on the apicoplast, an essential organelle with DNA replication and translation machinery of cyanobacterial origin. The lone exception, mycoplasma removal agent (MRA), is relatively expensive, and some mycoplasma strains have shown resistance to clearance with MRA. Here, we report that the fluoroquinolone antibiotic sparfloxacin is a safe, effective, and inexpensive alternative for treatment of mycoplasma contamination in cultures of apicomplexan parasites.

View Article and Find Full Text PDF

Transmission of Plasmodium falciparum and other malaria parasites requires their differentiation from asexual blood stages into gametocytes, the non-replicative sexual stage necessary to infect the mosquito vector. This transition involves changes in gene expression and chromatin reorganization that result in the activation and silencing of stage-specific genes. However, the genomes of malaria parasites have been noted for their limited number of transcriptional and chromatin regulators, and the molecular mediators of these changes remain largely unknown.

View Article and Find Full Text PDF

The Malaria Cell Atlas (MCA) is an ambitious, ongoing project to profile the intensity and heterogeneity of gene expression throughout the entire malaria parasite life cycle with single-cell resolution. Real et al. now complete the cycle by adding the transmission stages of the most virulent malaria parasite, Plasmodium falciparum, to this easy-to-use resource.

View Article and Find Full Text PDF

Babesiosis is a tick-borne parasitic disease of humans and livestock that has dramatically increased in frequency and geographical range over the past few decades. Infection of cattle often causes large economic losses, and human infection can be fatal in immunocompromised patients. Unlike for malaria, another disease caused by hemoprotozoan parasites, limited treatment options exist for infections.

View Article and Find Full Text PDF

Earlier genetic and inhibitor studies showed that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new antimalarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.

View Article and Find Full Text PDF

Little is known about the role of the three Jumonji C (JmjC) enzymes in (). Here, we show that JIB-04 and other established inhibitors of mammalian JmjC histone demethylases kill asexual blood stage parasites and are even more potent at blocking gametocyte development and gamete formation. In late stage parasites, JIB-04 increased levels of trimethylated lysine residues on histones, suggesting the inhibition of Jumonji demethylase activity.

View Article and Find Full Text PDF

Malaria parasites have a complex life cycle that includes specialized stages for transmission between their mosquito and human hosts. These stages are an understudied part of the lifecycle yet targeting them is an essential component of the effort to shrink the malaria map. The human parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria.

View Article and Find Full Text PDF

The proteasome (Pf20S) emerged as a target for antimalarials. Pf20S inhibitors are active at multiple stages of the parasite life cycle and synergize with artemisinins, suggesting that Pf20S inhibitors have potential to be prophylactic, therapeutic, and transmission blocking as well as are useful for combination therapy. We recently reported asparagine ethylenediamines (AsnEDAs) as immunoproteasome inhibitors and modified AsnEDAs as selective Pf20S inhibitors.

View Article and Find Full Text PDF

Human to vector transmission of malaria requires that some blood-stage parasites abandon asexual growth and convert into non-replicating sexual forms called gametocytes. The initial steps of gametocytogenesis remain largely uncharacterized. Here, we study this part of the malaria life cycle in Plasmodium falciparum using PfAP2-G, the master regulator of sexual conversion, as a marker of commitment.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNAseq) technologies are changing the way we study populations of cells by allowing for an unbiased characterization of the composition of these populations. This Forum article highlights outstanding questions in parasitology that could benefit from scRNAseq and provides guiding thoughts for planning such experiments.

View Article and Find Full Text PDF

Pathogens have to balance transmission with persistence. For Plasmodium falciparum, the most widespread and virulent malaria parasite, persistence within its human host requires continuous asexual replication within red blood cells, while its mosquito-borne transmission depends on intra-erythrocytic differentiation into non-replicating sexual stages called gametocytes. Commitment to either fate is determined during the preceding cell cycle that begins with invasion by a single, asexually committed merozoite and ends, 48 hours later, with a schizont releasing newly formed merozoites, all committed to either continued asexual replication or differentiation into gametocytes.

View Article and Find Full Text PDF

The asexual forms of the malaria parasite Plasmodium falciparum are adapted for chronic persistence in human red blood cells, continuously evading host immunity using epigenetically regulated antigenic variation of virulence-associated genes. Parasite survival on a population level also requires differentiation into sexual forms, an obligatory step for further human transmission. We reveal that the essential nuclear gene, P.

View Article and Find Full Text PDF

The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes.

View Article and Find Full Text PDF

Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PbAP2-G, a conserved member of the apicomplexan AP2 (ApiAP2) family of DNA-binding proteins, is essential for the commitment of asexually replicating forms to sexual development in Plasmodium berghei, a malaria parasite of rodents.

View Article and Find Full Text PDF

For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial.

View Article and Find Full Text PDF

The application of DNA microarray technologies to malaria genomics has been widely used but has been limited by sample availability and technical variability. To address these issues, we present a microarray hybridization protocol that has been optimized for use with two new Agilent Technologies DNA microarrays for Plasmodium falciparum and P. berghei.

View Article and Find Full Text PDF

Background: DNA microarrays have been a valuable tool in malaria research for over a decade but remain in limited use in part due their relatively high cost, poor availability, and technical difficulty. With the aim of alleviating some of these factors next-generation DNA microarrays for genome-wide transcriptome analysis for both Plasmodium falciparum and Plasmodium berghei using the Agilent 8 x 15 K platform were designed.

Methods: Probe design was adapted from previously published methods and based on the most current transcript predictions available at the time for P.

View Article and Find Full Text PDF

Host cell invasion by Toxoplasma gondii is critically dependent upon adhesive proteins secreted from the micronemes. Proteolytic trimming of microneme contents occurs rapidly after their secretion onto the parasite surface and is proposed to regulate adhesive complex activation to enhance binding to host cell receptors. However, the proteases responsible and their exact function are still unknown.

View Article and Find Full Text PDF