Background: Understanding the interactions between antibodies and the linear epitopes that they recognize is an important task in the study of immunological diseases. We present a novel computational method for the design of linear epitopes of specified binding affinity to Intravenous Immunoglobulin (IVIg).
Results: We show that the method, called Pythia-design can accurately design peptides with both high-binding affinity and low binding affinity to IVIg.
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.
View Article and Find Full Text PDF