Carbon-based materials show a remarkable variety of physical properties. For this reason, they have recently been explored for many advanced applications and emerging technologies. In the absence of actual "chemical" functionalities in these materials, tailoring these physical properties requires control on all levels of the structural hierarchy, from the atomic structure (carbon connectivity, defects, impurities), to the supramolecular level (domain orientations), nanoscopic length scale (domain sizes, porosity), microscopic structure (morphology), and macroscopic aspects (shape, surface chemistry).
View Article and Find Full Text PDFAmphiphilic molecules equipped with a reactive, carbon-rich "oligoyne" segment consisting of conjugated carbon-carbon triple bonds self-assemble into defined aggregates in aqueous media and at the air-water interface. In the aggregated state, the oligoynes can then be carbonized under mild conditions while preserving the morphology and the embedded chemical functionalization. This novel approach provides direct access to functionalized carbon nanomaterials.
View Article and Find Full Text PDFThe influence of architecture on polymer interactions is investigated and differences between branched and linear copolymers are found. A comprehensive picture is drawn with the help of a fluorescence approach (using pyrene and 4HP as probe molecules) together with IR or NMR spectroscopy and X-ray/light scattering measurements. Five key aspects are addressed: (1) synergistic intramolecular complexation within miktoarm stars.
View Article and Find Full Text PDFA noncentrosymmetric, star-shaped polymeric system is presented, which forms unimolecular micelles upon complexation of poly(propylene oxide) (PPO) with poly(dimethylaminoethyl methacrylate) (PDMAEMA). The influence of macromolecular architecture on the hydrophobicity of PPO and its interaction with PDMAEMA is investigated. Within stars, a complex between PPO and PDMAEMA is formed, lowering the interfacial tension of the hydrophobic domain (PDMAEMA acts as a "microsurfactant" for PPO).
View Article and Find Full Text PDF