Cisplatin is a widely used chemotherapeutic agent. However, it is causing nephrotoxic side effects including a reduced glomerular filtration rate and acute kidney injury. Although kidneys can recover to an extent from the treatment, long-term damage is possible.
View Article and Find Full Text PDFAs a consequence of the detoxification process, drugs and drug related metabolites can accumulate in the liver, resulting in drug induced liver injury (DILI), which is the major cause for dose limitation. Amitriptyline, a commonly used tricyclic anti-depressant, is known to cause DILI. The mechanism of Amitriptyline induced liver injury is not yet completely understood.
View Article and Find Full Text PDFRecently, bile acids (BAs) were reported as promising markers for drug-induced liver injury (DILI). BAs have been suggested to correlate with hepatocellular and hepatobiliary damage; however a clear connection of BA patterns with different types of DILI remains to be established. To investigate if BAs can improve the assessment of liver injury, 20 specific BAs were quantitatively profiled via LC-MS/MS in plasma and liver tissue in a model of methapyrilene-induced liver injury in rats.
View Article and Find Full Text PDFMetabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways.
View Article and Find Full Text PDFThis study reports the evaluation of four urinary biomarkers of renal toxicity, α-glutathione-S-transferase (α-GST), μ-GST, clusterin, and renal papillary antigen-1 (RPA-1), in male Sprague-Dawley and Han-Wistar rats given cisplatin, gentamicin, or N-phenylanthranilic acid (NPAA). Kidney injury was diagnosed histopathologically, according to site/nature of renal injury, and graded for severity. The area under the receiver operating characteristic (ROC) curve was used to compare the diagnostic accuracy of each exploratory renal biomarker with traditional indicators of renal function and injury (blood urea nitrogen [BUN], serum creatinine [sCr] as well as urinary N-acetyl-β-D-glucosaminidase [NAG] and protein).
View Article and Find Full Text PDFThe main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for the generation of mechanistic models of LH.
View Article and Find Full Text PDFThe European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with "omics" data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD).
View Article and Find Full Text PDF