Publications by authors named "Bjarni D Sigurdsson"

Physiological responses of soil microorganisms to global warming are important for soil ecosystem function and the terrestrial carbon cycle. Here, we investigate the effects of weeks, years, and decades of soil warming across seasons and time on the microbial protein biosynthesis machineries (i.e.

View Article and Find Full Text PDF

Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions.

View Article and Find Full Text PDF

Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.

View Article and Find Full Text PDF

Background And Aims: The response of subarctic grassland's below-ground to soil warming is key to understanding this ecosystem's adaptation to future climate. Functionally different below-ground plant organs can respond differently to changes in soil temperature (Ts). We aimed to understand the below-ground adaptation mechanisms by analysing the dynamics and chemistry of fine roots and rhizomes in relation to plant community composition and soil chemistry, along with the duration and magnitude of soil warming.

View Article and Find Full Text PDF

Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil.

View Article and Find Full Text PDF

Future climate warming in the Arctic will likely increase the vulnerability of soil carbon stocks to microbial decomposition. However, it remains uncertain to what extent decomposition rates will change in a warmer Arctic, because extended soil warming could induce temperature adaptation of bacterial communities. Here we show that experimental warming induces shifts in the temperature-growth relationships of bacterial communities, which is driven by community turnover and is common across a diverse set of 8 (sub) Arctic soils.

View Article and Find Full Text PDF
Article Synopsis
  • The response of soil microorganisms to global warming is crucial for understanding future soil-climate interactions, yet this area remains poorly understood.
  • Researchers used metatranscriptomics to examine how microorganisms in subarctic grasslands responded to both medium-term (8 years) and long-term (>50 years) warming of +6°C.
  • Findings showed a community-wide increase in essential metabolic processes and cell division, along with a decrease in protein biosynthesis machinery, leading to lower microbial biomass and soil nutrient content.
  • The study concludes that the reduced protein synthesis allows bacteria to conserve energy, facilitating high metabolic activity and growth despite ongoing temperature increases.
View Article and Find Full Text PDF

Global warming increases soil temperatures and promotes faster growth and turnover of soil microbial communities. As microbial cell walls contain a high proportion of organic nitrogen, a higher turnover rate of microbes should also be reflected in an accelerated organic nitrogen cycling in soil. We used a metatranscriptomics and metagenomics approach to demonstrate that the relative transcription level of genes encoding enzymes involved in the extracellular depolymerization of high-molecular-weight organic nitrogen was higher in medium-term (8 years) and long-term (>50 years) warmed soils than in ambient soils.

View Article and Find Full Text PDF

Although ongoing research has revealed some of the main drivers behind global spatial patterns of microbial communities, spatio-temporal dynamics of these communities still remain largely unexplored. Here, we investigate spatio-temporal variability of both bacterial and eukaryotic soil microbial communities at local and intercontinental scales. We compare how temporal variation in community composition scales with spatial variation in community composition, and explore the extent to which bacteria, protists, fungi and metazoa have similar patterns of temporal community dynamics.

View Article and Find Full Text PDF

Temperature governs most biotic processes, yet we know little about how warming affects whole ecosystems. Here we examined the responses of 128 components of a subarctic grassland to either 5-8 or >50 years of soil warming. Warming of >50 years drove the ecosystem to a new steady state possessing a distinct biotic composition and reduced species richness, biomass and soil organic matter.

View Article and Find Full Text PDF

Soil microorganisms control carbon losses from soils to the atmosphere1-3, yet their responses to climate warming are often short-lived and unpredictable4-7. Two mechanisms, microbial acclimation and substrate depletion, have been proposed to explain temporary warming effects on soil microbial activity8-10. However, empirical support for either mechanism is unconvincing.

View Article and Find Full Text PDF

Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate.

View Article and Find Full Text PDF

Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment).

View Article and Find Full Text PDF

The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance.

View Article and Find Full Text PDF

Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in-depth understanding of changes in soil organic carbon (SOC) after soil warming, long-term responses of SOC stabilization mechanisms such as aggregation, organo-mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland.

View Article and Find Full Text PDF

Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant-soil nutrient concentrations. We conducted a meta-analysis of 215 peer-reviewed articles and 1233 observations.

View Article and Find Full Text PDF

Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management.

View Article and Find Full Text PDF

Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa.

View Article and Find Full Text PDF

The growth responses of mature Norway spruce (Picea abies (L.) Karst.) trees exposed to elevated [CO(2)] (CE; 670-700 ppm) and long-term optimized nutrient availability or elevated air temperature (TE; ±3.

View Article and Find Full Text PDF

Riparian forests (RF) growing along streams, rivers and lakes comprise more than 2% of the forest area in the Nordic countries (considering a 10 m wide zone from the water body). They have special ecological functions in the landscape. They receive water and nutrients from the upslope areas, are important habitats for biodiversity, have large soil carbon stores, but may emit more greenhouse gases (GHG) than the uplands.

View Article and Find Full Text PDF

Stomatal conductance was quantified with sap flux sensors and whole-tree chambers in mature Norway spruce (Picea abies (L.) Karst.) trees after 3 years of exposure to elevated CO(2) concentration ([CO(2)]) in a 13-year nutrient optimization experiment.

View Article and Find Full Text PDF

Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response).

View Article and Find Full Text PDF