Metabolism provides the foundation for all cellular functions. During persistent infections, in adapted pathogenic bacteria metabolism functions radically differently compared with more naïve strains. Whether this is simply a necessary accommodation to the persistence phenotype or if metabolism plays a direct role in achieving persistence in the host is still unclear.
View Article and Find Full Text PDFUnderstanding metabolism is fundamental to access and harness bacterial physiology. In most bacteria, nutrient utilization is hierarchically optimized according to their energetic potential and their availability in the environment to maximise growth rates. Low-throughput methods have been largely used to characterize bacterial metabolic profiles.
View Article and Find Full Text PDFNumerous studies have demonstrated that tardigrades in a resting state (tun state) are very resistant to exceptional stress levels in comparison with the resistance observed in multicellular organisms in general. The types of stress include desiccation and radiation, which are also relevant in astrobiological research, and therefore, tardigrades are used as multicellular model organisms. For example, tardigrades have been investigated in the TARSE, TARDIS, RoTaRad, and TARDIKISS projects; their survival has been evaluated according to stressful conditions that prevail in low earth orbit, including the effects of cosmic radiation and microgravity.
View Article and Find Full Text PDFStudies of tardigrade biology have been severely limited by the sparsity of appropriate quantitative techniques, informative on a single-organism level. Therefore, many studies rely on motility-based survival scoring and quantifying reproductive success. Measurements of O respiration rates, as an integrating expression of the metabolic activity of single tardigrades, would provide a more comprehensive insight into how an individual tardigrade is responding to specific environmental factors or changes in life stages.
View Article and Find Full Text PDF