Outdoor spatial mosquito repellents, such as mosquito coils or heating devices, release pyrethroid insecticides into the air to provide protection from mosquitoes within a defined area. This broadcast discharge of pyrethroids into the environment raises concern about the effect on non-target organisms. A previous study found that prallethrin discharged from a heating device did not affect honey bee (Apis mellifera L.
View Article and Find Full Text PDFSummary: Knowledge graphs are being increasingly used in biomedical research to link large amounts of heterogenous data and facilitate reasoning across diverse knowledge sources. Wider adoption and exploration of knowledge graphs in the biomedical research community is limited by requirements to understand the underlying graph structure in terms of entity types and relationships, represented as nodes and edges, respectively, and learn specialized query languages for graph mining and exploration. We have developed a user-friendly interface dubbed ExEmPLAR (Extracting, Exploring, and Embedding Pathways Leading to Actionable Research) to aid reasoning over biomedical knowledge graphs and assist with data-driven research and hypothesis generation.
View Article and Find Full Text PDFBecause nontarget, beneficials, like insect pollinators, may be exposed unintentionally to insecticides, it is important to evaluate the impact of chemical controls on the behaviors performed by insect pollinators in field trials. Here we examine the impact of a portable mosquito repeller, which emits prallethrin, a pyrethroid insecticide, on honey bee foraging and recruitment using a blinded, randomized, paired, parallel group trial. We found no significant effect of the volatilized insecticide on foraging frequency (our primary outcome), waggle dance propensity, waggle dance frequency, and feeder persistency (our secondary outcomes), even though an additional deposition study confirmed that the treatment device was performing appropriately.
View Article and Find Full Text PDFIntroduction: Genome-wide association studies (GWAS) have played a critical role in identifying many thousands of loci associated with complex phenotypes and diseases. This has led to several translations of novel disease susceptibility genes into drug targets and care. This however has not been the case for analyses where sample sizes are small, which suffer from multiple comparisons testing.
View Article and Find Full Text PDFWithin clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph-based data models elucidate the interconnectedness among core biomedical concepts, enable data structures to be easily updated, and support intuitive queries, visualizations, and inference algorithms. However, knowledge discovery across these "knowledge graphs" (KGs) has remained difficult.
View Article and Find Full Text PDFClinical and biomarker phenotypic associations for carriers of protein function-altering variants may help to elucidate gene function and health effects in populations. We genotyped 1127 Strong Heart Family Study participants for protein function-altering single nucleotide variants (SNV) and indels selected from a low coverage whole exome sequencing of American Indians. We tested the association of each SNV/indel with 35 cardiometabolic traits.
View Article and Find Full Text PDFDespite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction).
View Article and Find Full Text PDFClinical, biomedical, and translational science has reached an inflection point in the breadth and diversity of available data and the potential impact of such data to improve human health and well-being. However, the data are often siloed, disorganized, and not broadly accessible due to discipline-specific differences in terminology and representation. To address these challenges, the Biomedical Data Translator Consortium has developed and tested a pilot knowledge graph-based "Translator" system capable of integrating existing biomedical data sets and "translating" those data into insights intended to augment human reasoning and accelerate translational science.
View Article and Find Full Text PDFMotivation: As the number of public data resources continues to proliferate, identifying relevant datasets across heterogenous repositories is becoming critical to answering scientific questions. To help researchers navigate this data landscape, we developed Dug: a semantic search tool for biomedical datasets utilizing evidence-based relationships from curated knowledge graphs to find relevant datasets and explain why those results are returned.
Results: Developed through the National Heart, Lung and Blood Institute's (NHLBI) BioData Catalyst ecosystem, Dug has indexed more than 15 911 study variables from public datasets.
Here, we propose a broad concept of 'Clinical Outcome Pathways' (COPs), which are defined as a series of key molecular and cellular events that underlie therapeutic effects of drug molecules. We formalize COPs as a chain of the following events: molecular initiating event (MIE) → intermediate event(s) → clinical outcome. We illustrate the concept with COP examples both for primary and alternative (i.
View Article and Find Full Text PDFThe COVID-19 pandemic has catalyzed a widespread effort to identify drug candidates and biological targets of relevance to SARS-COV-2 infection, which resulted in large numbers of publications on this subject. We have built the VID-19 nowledge xtractor (COKE), a web application to extract, curate, and annotate essential drug-target relationships from the research literature on COVID-19. SciBiteAI ontological tagging of the COVID Open Research Data set (CORD-19), a repository of COVID-19 scientific publications, was employed to identify drug-target relationships.
View Article and Find Full Text PDFAs the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators worked to apply existing event sequence visual analytics technologies to a longitudinal clinical data from a cohort of 998 patients with high rates of COVID-19 infection. This paper describes the initial steps toward this goal, including: (1) the data transformation and processing work required to prepare the data for visual analysis, (2) initial findings and observations, and (3) qualitative feedback and lessons learned which highlight key features as well as limitations to address in future work.
View Article and Find Full Text PDFBackground: As exome sequencing (ES) integrates into clinical practice, we should make every effort to utilize all information generated. Copy-number variation can lead to Mendelian disorders, but small copy-number variants (CNVs) often get overlooked or obscured by under-powered data collection. Many groups have developed methodology for detecting CNVs from ES, but existing methods often perform poorly for small CNVs and rely on large numbers of samples not always available to clinical laboratories.
View Article and Find Full Text PDFBackground: Knowledge graphs are a common form of knowledge representation in biomedicine and many other fields. We developed an open biomedical knowledge graph-based system termed Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways (ROBOKOP). ROBOKOP consists of both a front-end user interface and a back-end knowledge graph.
View Article and Find Full Text PDFObesity is routinely considered as a single disease state, which drives a "one-size-fits-all" approach to treatment. We recently convened the first annual University of North Carolina Interdisciplinary Nutrition Sciences Symposium to discuss the heterogeneity of obesity and the need for translational science to advance understanding of this heterogeneity. The symposium aimed to advance scientific rigor in translational studies from animal to human models with the goal of identifying underlying mechanisms and treatments.
View Article and Find Full Text PDF"Knowledge graphs" (KGs) have become a common approach for representing biomedical knowledge. In a KG, multiple biomedical data sets can be linked together as a graph representation, with nodes representing entities, such as "chemical substance" or "genes," and edges representing predicates, such as "causes" or "treats." Reasoning and inference algorithms can then be applied to the KG and used to generate new knowledge.
View Article and Find Full Text PDFThe COVID-19 pandemic has catalyzed a widespread effort to identify drug candidates and biological targets of relevance to SARS-COV-2 infection, which resulted in large numbers of publications on this subject. We have built the VID-19 nowledge xtractor (COKE), a web application to extract, curate, and annotate essential drug-target relationships from the research literature on COVID-19 to assist drug repurposing efforts. SciBiteAI ontological tagging of the COVID Open Research Dataset (CORD-19), a repository of COVID-19 scientific publications, was employed to identify drug-target relationships.
View Article and Find Full Text PDFBackground: Efforts are underway to semantically integrate large biomedical knowledge graphs using common upper-level ontologies to federate graph-oriented application programming interfaces (APIs) to the data. However, federation poses several challenges, including query routing to appropriate knowledge sources, generation and evaluation of answer subsets, semantic merger of those answer subsets, and visualization and exploration of results.
Objective: We aimed to develop an interactive environment for query, visualization, and deep exploration of federated knowledge graphs.
Summary: In response to the COVID-19 pandemic, we established COVID-KOP, a new knowledgebase integrating the existing Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways (ROBOKOP) biomedical knowledge graph with information from recent biomedical literature on COVID-19 annotated in the CORD-19 collection. COVID-KOP can be used effectively to generate new hypotheses concerning repurposing of known drugs and clinical drug candidates against COVID-19 by establishing respective confirmatory pathways of drug action.
Availability And Implementation: COVID-KOP is freely accessible at https://covidkop.
In response to the COVID-19 pandemic, we established COVID-KOP, a new knowledgebase integrating the existing ROBOKOP biomedical knowledge graph with information from recent biomedical literature on COVID-19 annotated in the CORD-19 collection. COVID-KOP can be used effectively to test new hypotheses concerning repurposing of known drugs and clinical drug candidates against COVID-19. COVID-KOP is freely accessible at View Article and Find Full Text PDF
Objective: Epidemiological estimates suggest that nearly half of individuals diagnosed with alcohol use disorder will be diagnosed with another mental health disorder, with strong associations involving other externalizing disorders. Molecular genetic studies investigating the relation between alcohol use disorder and externalizing behaviors (e.g.
View Article and Find Full Text PDFWhile studies have reported genetic loci affecting serum urate (SU) concentrations, few studies have been conducted in minority populations. Our objective for this study was to identify genetic loci regulating SU in a multigenerational family-based cohort of American Indians, the Strong Heart Family Study (SHFS). We genotyped 162,718 single nucleotide polymorphisms (SNPs) in 2000 SHFS participants using an Illumina MetaboChip array.
View Article and Find Full Text PDFBackground: The 2015 American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines for clinical sequence variant interpretation state that "well-established" functional studies can be used as evidence in variant classification. These guidelines articulated key attributes of functional data, including that assays should reflect the biological environment and be analytically sound; however, details of how to evaluate these attributes were left to expert judgment. The Clinical Genome Resource (ClinGen) designates Variant Curation Expert Panels (VCEPs) in specific disease areas to make gene-centric specifications to the ACMG/AMP guidelines, including more specific definitions of appropriate functional assays.
View Article and Find Full Text PDFJ Chem Inf Model
December 2019
A proliferation of data sources has led to the notional existence of an implicit Knowledge Graph (KG) that contains vast amounts of biological knowledge contributed by distributed Application Programming Interfaces (APIs). However, challenges arise when integrating data across multiple APIs due to incompatible semantic types, identifier schemes, and data formats. We present ROBOKOP KG ( http://robokopkg.
View Article and Find Full Text PDF