Pancreatic ductal adenocarcinoma (PDAC) has an atypical, highly stromal tumour microenvironment (TME) that profoundly contributes to its poor prognosis. Here, to better understand the intercellular signalling between cancer and stromal cells directly in PDAC tumours, we developed a multidimensional proteomic strategy called TMEPro. We applied TMEPro to profile the glycosylated secreted and plasma membrane proteome of 100 human pancreatic tissue samples to a great depth, define cell type origins and identify potential paracrine cross-talk, especially that mediated through tyrosine phosphorylation.
View Article and Find Full Text PDFCells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved.
View Article and Find Full Text PDFColorectal cancer is the second most prevalent and deadly cancer worldwide. The emergence of immune checkpoint therapy has provided a revolutionary strategy for the treatment of solid tumors. However, less than 5 % of colorectal cancer patients respond to immune checkpoint therapy.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need.
View Article and Find Full Text PDFThe existing conventional treatments for breast cancer, including immune checkpoint blockade, exhibit limited effects in some cancers, particularly triple-negative breast cancer. Epigenetic alterations, specifically DNMT and HDAC alterations, are implicated in breast cancer pathogenesis. We demonstrated that DNMTs and HDACs are overexpressed and positively correlated in breast cancer.
View Article and Find Full Text PDFPARP inhibitors and HDAC inhibitors have been approved for the clinical treatment of malignancies, but acquired resistance of or limited effects on solid tumors with a single agent remain as challenges. Bioinformatics analyses and a combination of experiments had demonstrated the synergistic effects of PARP and HDAC inhibitors in triple-negative breast cancer. A series of novel dual PARP and HDAC inhibitors were rationally designed and synthesized, and these molecules exhibited high enzyme inhibition activity with excellent antitumor effects in vitro and in vivo.
View Article and Find Full Text PDFThe Jumonji domain-containing protein demethylase 3 (JMJD3) and histone deacetylase (HADC) are related to various cancers and regard as antitumor targets for drug discovery. In this study, based on rational drug design strategy, we designed and synthesized a series of pyrimidine derivatives with hydroxamic acid as novel dual JMJD3 and HDAC inhibitors for synergistic cancer treatment. Compound A5b exhibited inhibitory potency against JMJD3 and HDAC1/6 simultaneously and favorable cytotoxicity against human cancer cells such as A549 and U937.
View Article and Find Full Text PDFExosomes are considered as promising biomarkers for early cancer diagnosis and prognosis. However, the majority of the research studies focused on a single type of exosomal biomarkers, which cannot comprehensively reflect the state of cancer for accurate diagnosis. To address this problem, we presented a ship-shaped microfluidic device containing a microcolumn array for simultaneous detection of exosomal surface proteins and miRNAs.
View Article and Find Full Text PDFAndrogen receptor (AR) signaling plays important roles in breast cancer progression. We show here that Kindlin-2, a focal adhesion protein, is critically involved in the promotion of AR signaling and breast cancer progression. Kindlin-2 physically associates with AR and Src through its two neighboring domains, namely F1 and F0 domains, resulting in formation of a Kindlin-2-AR-Src supramolecular complex and consequently facilitating Src-mediated AR Tyr-534 phosphorylation and signaling.
View Article and Find Full Text PDFProtein complexes mediated by various post-translational modifications (PTMs) play important roles in almost every aspect of biological processes. PTM-mediated protein complexes often have weak and transient binding properties, which limit their unbiased profiling especially in complex biological samples. Here, we developed a plug-and-play chemical proteomic approach for high-throughput analyis of PTM-mediated protein complexes.
View Article and Find Full Text PDFCancer is a common malignant disease with complex signaling networks, which means it is unmanageable to cancer therapy by using single classical targeted drug. Recently, dual- or multitarget drugs have emerged as a promising option for cancer therapies. Although many multifunctional compounds targeting HDAC have been validated, as far as we know, there is no molecule targeting GLP and HDAC synchronously.
View Article and Find Full Text PDFChemokine receptor 2 (CXCR2) is the receptor of glutamic acid-leucine-arginine sequence-contained chemokines CXCs (ELR CXCs). In recent years, CXCR2-target treatment strategy has come a long way in cancer therapy. CXCR2 antagonists could block CXCLs/CXCR2 axis, and are widely used in regulating immune cell migration, tumor metastasis, apoptosis and angiogenesis.
View Article and Find Full Text PDFAs a typical member of intrinsically disordered proteins (IDPs), HMGA1a carries many post-translational modifications (PTMs). To study the undefined function of acidic tail phosphorylations, seven HMGA1a proteins with site-specific modification(s) were chemically synthesized via Ser/Thr ligation. We found that the phosphorylations significantly inhibit HMGA1a-P53 interaction and the phosphorylations can induce conformational change of HMGA1a from an "open state" to a "close state.
View Article and Find Full Text PDFAcquired resistance leads to the failure of EGFR TKIs in NSCLC treatment. A novel series of hydroxamic acid-containing 4-aminoquinazoline derivatives as irreversible ErbB/HDAC multitargeted inhibitors for NSCLC therapy had been designed and synthesized, which displayed weak anti-proliferative activity in several EGFR wild-type cancer cell lines (NCI-H838, SK-BR-3, A549, A431) yet retained moderate activity to EGFR resistance mutation harboring NCI-H1975 cells. The mechanistic studies revealed that the representative compound 11e was able to inhibit the phosphorylation of EGFR, up-regulate hyperacetylation of histone H3 and even reduce the expression of EGFR and Akt in NCI-H1975 cells.
View Article and Find Full Text PDFSteady improvement in Orbitrap-based mass spectrometry (MS) technologies has greatly advanced the peptide sequencing speed and depth. In-depth analysis of the performance of state-of-the-art MS and optimization of key parameters can improve sequencing efficiency. In this study, we first systematically compared the performance of two popular data-dependent acquisition approaches, with Orbitrap as the first-stage (MS1) mass analyzer and the same Orbitrap (high-high approach) or ion trap (high-low approach) as the second-stage (MS2) mass analyzer, on the Orbitrap Fusion mass spectrometer.
View Article and Find Full Text PDFUnderstanding the tumor heterogeneity through spatially resolved proteome profiling is important for biomedical research and clinical application. Laser capture microdissection (LCM) is a powerful technology for exploring local cell populations without losing spatial information. Conventionally, tissue sections are stained with hematoxylin and eosin (H&E) for cell-type identification before LCM.
View Article and Find Full Text PDFPhosphotyrosine (pTyr) signaling complexes are important resources of biomarkers and drug targets which often need to be profiled with enough throughput. Current profiling approaches are not feasible to meet this need due to either biased profiling by antibody-based detection or low throughput by traditional affinity purification-mass spectrometry approach (AP-MS), as exemplified by our previously developed photo-pTyr-scaffold approach. To address these limitations, we developed a 96-well microplate-based sample preparation and fast data independent proteomic analysis workflow.
View Article and Find Full Text PDFProteins often assemble into multiprotein complexes for carrying out their biological functions. Affinity purification combined with mass spectrometry (AP-MS) is a method of choice for unbiasedly charting protein complexes. Typically, genetically tagged bait protein and associated proteins are immunoprecipitated from cell lysate and subjected to in-gel or on-bead digestion for MS analysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Phosphotyrosine (pTyr)-regulated protein complexes play critical roles in cancer signaling. The systematic characterization of these protein complexes in tumor samples remains a challenge due to their limited access and the transient nature of pTyr-mediated interactions. We developed a hybrid chemical proteomics approach, termed Photo-pTyr-scaffold, by engineering Src homology 2 (SH2) domains, which specifically bind pTyr proteins, with both trifunctional chemical probes and genetic mutations to overcome these challenges.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
Dynamic tyrosine phosphorylation is a key molecular modulation for many signal transduction events. Because of their low abundance and dynamic nature in cells, the detection and enrichment of phosphotyrosine proteins has long relied on specific antibodies, such as 4G10 and P-Tyr-100. Another well-established approach for phosphotyrosine proteins recognition and enrichment is by their specific binding domains, such as Src homology 2 (SH2) domains.
View Article and Find Full Text PDFA newly synthesized acridone derivative 8a shows potent antitumor activity against CCRF-CEM leukemia cells. Herein, the first proteomic study of 8a effects in CCRF-CEM cells was performed by 2D nano-LC-ESI-MS/MS to better understand the mechanisms of action of 8a. Data analyses based on PLGS, STRING, Cytoscape, and database for annotation, visualization, and integrated discovery identified 55 proteins that were differentially expressed in response to 8a exposure.
View Article and Find Full Text PDFAim: To investigate the mechanisms underlying anticancer action of the benzimidazole acridine derivative N-{(1H-benzo[d]imidazol-2-yl)methyl}-2-butylacridin-9-amine(8m) against human colon cancer cells in vitro.
Methods: Human colon cancer cell lines SW480 and HCT116 were incubated in the presence of 8m, and then the cell proliferation and apoptosis were measured. The expression of apoptotic/signaling genes and proteins was detected using RT-PCR and Western blotting.
Based on the roles of Raf1 and JNK1 in hepatocarcinoma development, scaffold-based drug design was employed to produce a series of compounds, which subsequently were synthesized and explored as potential dual inhibitors Raf1 and JNK1 kinases for anti-tumor treatment. The compound 1-(3-chloro-4-(6-ethyl-4-oxo-4H-chromen-2-yl)phenyl)-3-(4-chloro-phenyl)urea (3d) showed 66%, 67% and 13% inhibition rate at 50 μM against Raf1, JNK1 and p38-alpha, respectively, but no effect on ERK1 and ERK2, and inhibited the expression of pERK1/2 markedly and HepG2 cells proliferation with IC(50) at 8.3 μM.
View Article and Find Full Text PDFProtein Pept Lett
September 2012
The hydrophobic core in Bcl-x(L) composed of Trp137, Ile140, Trp181, Ile182, Trp188 and Phe191 is highly conserved and essential for protein folding, protein stability and binding affinity with BH3-peptide. 9 mutants of Ile140 residue were constructed and characterized in order to get better understanding of the effect of the hydrophobic core. Binding assay demonstrated that binding affinities between 4 charged mutants and BH3-peptide were significantly weakened or lost, suggesting that the integrity of the hydrophobic core has close relationship with binding.
View Article and Find Full Text PDF