Objective: To investigate O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation in humoral tissue as biomarker for lung cancer diagnosis by pooling relevant open published data.
Methods: Clinical studies relevant to MGMT gene promoter methylation and lung cancer were systematic electronic searched in the databases of Medline, EMBASE, Ovid, Web of Science, and CNKI. Data of true positive (tp), false positive (fp), false negative (fn), and true negative (tn) were extracted from the included studies and made combination.
Multiple primary malignant tumors (MPMTs) are rarely seen among the patients with malignant neoplasms. Moreover, the existence of five MPMTs in the same patient is an extremely rare phenomenon. In this case, a 42-year-old male patient developed five metachronous MPMTs within 16 years and the duration between each malignant tumor shortened with the progression of the disease.
View Article and Find Full Text PDFSearching for actinide decorporation agents with advantages of high decorporation efficiency, minimal biological toxicity, and high oral efficiency is crucial for nuclear safety and the sustainable development of nuclear energy. Removing actinides deposited in bones after intake is one of the most significant challenges remaining in this field because of the instantaneous formation of highly stable actinide phosphate complexes upon contact with hydroxyapatite. Here we report a hydroxypyridinone-based ligand (5LIO-1-Cm-3,2-HOPO) exhibiting stronger affinity for U(VI) compared with the reported tetradentate hydroxypyridinone ligands.
View Article and Find Full Text PDFReal-time monitoring of drug delivery systems has attracted growing interest for potential applications in biomedical therapy. Fluorescence imaging is a highly sensitive technique for illuminating the pathways of such systems. In this work, we designed and synthesized a new near infrared (NIR) fluorescent dye monomer (NFM).
View Article and Find Full Text PDFResponsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.
View Article and Find Full Text PDF