Publications by authors named "Bizhen Zeng"

Biochar is widely acknowledged for its remarkable impact on soil conditioning. However, the influence of different sources of biochar, particularly anaerobic digested sludge biochar (ADBC) derived from anaerobic digested sludge and biochar derived from waste activated sludge, on alkaline soil remains largely unexplored. To address this knowledge gap, a comprehensive field experiment was conducted over a period of 180 days to investigate the effects of ADBC on slightly alkaline soil.

View Article and Find Full Text PDF

Sludge pretreatment plays a crucial role in solubilizing particulate matters to release organic matter for subsequent anaerobic fermentation (AF). This study innovatively combines radio frequency (RF) heating and alkaline treatment, and finds that the combined pretreatment achieved a sludge disintegration rate of 35.11 %, which is 15.

View Article and Find Full Text PDF

Wastewater treatment is effectively conducted using anaerobic biological methods. Nevertheless, the efficiency of these methods can be hindered by challenges like short-circuits and dead zones, particularly in treating persistent contaminants. This work utilized computational fluid dynamics (CFD) simulations to enhance water distribution, ensuring uniform interactions between solid and liquid phases, and thus mitigating issues related to short-circuits and dead zones.

View Article and Find Full Text PDF

Effective dewatering is vital for both sludge treatment and resource recovery. This study focuses on converting post-anaerobic digested sludge into biochar to enhance sludge dewatering. The sludge-derived biochar is further modified with polyacrylamide (PAM-ADBC) and applied with sulfuric acid-modified montmorillonite (HMTS) for better performance.

View Article and Find Full Text PDF

The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored.

View Article and Find Full Text PDF

Macroporous ion exchange resin has excellent selectivity to nitrogen (N), phosphorus (P) and partially soluble refractory organic compounds contained in the secondary effluent of wastewater treatment plants (WWTP). In this study, macroporous ion exchange resins were chosen as an alternative to single biochemical nitrogen removal processes. Various conditions were examined to optimize adsorption performance, and the adsorption mechanism was explored through isotherm fitting, thermodynamic parameter calculation, and kinetic analysis.

View Article and Find Full Text PDF

Ion exchange resin process is a widely used process in wastewater treatment plants, but its waste brine is characterized by high salinity and nitrate concentration, leading to costly treatment. This study innovatively explored the use of an up-flow anaerobic sludge bed (USB) for the treatment of waste brine from ion exchange resin process, following a pilot-scale ion exchange resin process. Specifically, the D890 ion exchange resin was employed for nitrate removal from secondary effluent, with resin regeneration using 4% NaCl solution.

View Article and Find Full Text PDF

While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca concentration in range of 0-3 mM.

View Article and Find Full Text PDF

In this study, mechanisms of membrane fouling caused by polysaccharides with different molecular structures in polyaluminum chloride (PACl) coagulation-ultrafiltration (C-UF) process were explored. Carrageenan and xanthan gum were chosen for model foulants of straight chain and branched chain polysaccharides, respectively. Filtration experiments showed that, with PACl dosage of 0-5 mM, specific filtration resistance (SFR) of carrageenan and xanthan solution showed a unimodal pattern and a continuous decrease pattern, respectively.

View Article and Find Full Text PDF

While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.

View Article and Find Full Text PDF

Fouling behaviors of polysaccharides vary with their structure, while the mechanisms underlying this phenomenon remain unexplored. This work was carried out to explore the thermodynamic fouling mechanisms of polysaccharides with different structure. Carrageenan and xanthan gum were selected as the model polysaccharides with structure of straight and branch chains, respectively.

View Article and Find Full Text PDF

While transparent exopolymer particles (TEP) has high fouling potential, its underlying fouling mechanisms have not yet been well revealed. In current work, fouling characteristics of TEP under different Ca concentrations (0 to 1.5 mM) were investigated.

View Article and Find Full Text PDF