Ionic conductive hydrogel-based temperature sensors have emerged as promising candidates due to their good stretchability and biocompatibility. However, the unsatisfactory sensitivity, sluggish response/recovery speed, and poor environmental stability limit their applications for accurate long-term health monitoring and robot perception, especially in extreme environments. To address these concerns, here, the stretchable temperature sensors based on a double-side elastomer-encapsulated thin-film organohydrogel (DETO) architecture are proposed with impressive performance.
View Article and Find Full Text PDF