Exploiting localized heat-generation density and the resulting enhanced temperature-rise for controlled growth of carbon nanotubes (CNTs) is reported, and its potentials for batch-production of high-quality CNT probes are demonstrated. Optical near field chemical vapor deposition (ONF-CVD) benchtop fabrication schemes are developed for the localized integration of individual well-aligned carbon nanotubes without bending/buckling exactly at desired nanoscale sites. It is demonstrated that generating self-aligned catalyst nanoparticles superimposed on top of silicon nanotips, along with near-field induced absorption confinement, provide the ability to localize the generated heat at the nanotips apexes, and control the CNT growth locations.
View Article and Find Full Text PDFNear field scanning optical microscopy exploiting differential interference contrast enhancement is demonstrated. Beam splitting in the near field region is implemented using a dual color probe based on plasmonic color sorter idea. This provides the ability to illuminate two neighboring points on the sample simultaneously.
View Article and Find Full Text PDFAn inconsistency between the circular symmetric geometry of conventional optical imagers and the geometry of long linear sensors used in today's line-scan cameras results in suboptimal separate design of optics and electronics of scanner systems. Based on the method of foveated optical imaging, a technique named foveated scanning (FS) is proposed in this paper. The FS technique is employed to enlarge the one-dimensional resolved field of view (RFOV) of conventional lenses and permits optimized performance on a line-of-interest in the image plane where the optoelectronic sensor is located.
View Article and Find Full Text PDFA simple and efficient transmission line model is proposed here to study how the transmission characteristics of photonic crystal waveguides are tailored by introduction of stubs patterned in the photonic crystal lattice. It is shown that band-pass and band-stop optical filters can be easily designed and optimized when stubs of appropriate length are brought in. Since the lengths of the designed stubs are not necessarily integer multiples of the photonic crystal lattice constant, a geometric shift in a portion of the photonic crystal structure is shown to be essential.
View Article and Find Full Text PDFThe creation of novel engineered multimodal nanoparticles (NPs) is a key focus in bionanotechnology and can lead to deep understanding of biological processes at the molecular level. Here, we present a multi-component system made of gold-coupled core-shell SPIONs, as a new nanoprobe with signal enhancement in surface Raman spectroscopy, due to its jagged-shaped gold shell coating.
View Article and Find Full Text PDFThird order nonlinear effects and its enhancement in gold nanostructures has been numerically studied. Analysis method is based on computationally solving nonlinear Maxwell's equations, considering dispersion behavior of permittivity described by Drude model and third order nonlinear susceptibility. Simulation is done by method of nonlinear finite difference time domain method, in which nonlinear equations of electric field are solved by Newton-Raphshon method.
View Article and Find Full Text PDFThe transmission-line analogy of the planar electromagnetic reflection problem is exploited to obtain a transmission-line model that can be used to design effective, robust, and wideband interference-based matching stages. The proposed model based on a new definition for a scalar impedance is obtained by using the reflection coefficient of the zeroth-order diffracted plane wave outside the photonic crystal. It is shown to be accurate for in-band applications, where the normalized frequency is low enough to ensure that the zeroth-order diffracted plane wave is the most important factor in determining the overall reflection.
View Article and Find Full Text PDFThe Goos-Haenchen shift of a totally reflected beam at the planar interface of two dielectric media, as if the incident beam is reflected from beneath the interface between the incident and transmitted media, has been geometrically associated with the penetration of the incident photons in the less-dense forbidden transmission region. This geometrical approach is here generalized to analytically calculate the Goos-Haenchen shift in one- and two-dimensional periodic structures. Several numerical examples are presented, and the obtained results are successfully tested against the well-known Artman's formula.
View Article and Find Full Text PDF