Publications by authors named "Biyun Liu"

The extensive use of aluminum (Al) poses an escalating ecological risk to aquatic ecosystems. The epiphytic biofilm on submerged plant leaves plays a crucial role in the regulation nutrient cycling and energy flow within aquatic environments. Here, we conducted a mesocosm experiment aimed at elucidating the impact of different Al concentrations (0, 0.

View Article and Find Full Text PDF

The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water.

View Article and Find Full Text PDF

Zearalenone (ZEA) is a prevalent mycotoxin found in moldy diets and is associated with reproductive dysfunction. However, the molecular underpinning of ZEA in impairment of spermatogenesis remains largely unknown. To unveil the toxic mechanism of ZEA, we established a co-culture model using porcine Sertoli cells and porcine spermatogonial stem cells (pSSCs) to investigate the impact of ZEA on these cell types and their associated signaling pathways.

View Article and Find Full Text PDF

To reveal the characteristics and key impact factors of phytoplankton communities in different types of lakes, sampling surveys for phytoplankton and water quality parameters were conducted at 174 sampling sites in a total of 24 lakes covering urban, countryside, and ecological conservation areas of Wuhan in spring, summer, autumn, and winter 2018. The results showed that a total of 365 species of phytoplankton from nine phyla and 159 genera were identified in the three types of lakes. The main species were green algae, cyanobacteria, and diatoms, accounting for 55.

View Article and Find Full Text PDF

Aluminum (Al) is a concentration-dependent toxic metal found in the crust of earth that has no recognized biological use. Nonetheless, the mechanism of Al toxicity to submerged plants remains obscure, especially from a cell/subcellular structure and functional group perspective. Therefore, multiple dosages of Al (0, 0.

View Article and Find Full Text PDF

Excessive proliferation of filamentous green algae (FGA) is a new ecological problem in lake systems that have not yet reached a steady state. However, knowledge on how FGA decomposition affects the physical and chemical properties of microhabitats, and whether FGA decomposition stimulates the growth of harmful microalgae in the same niche and promotes the formation of harmful algal blooms remains unclear. In this study, we investigated the decomposing effect of a typical FGA, Cladophora oligoclora, on the density and photosynthetic capacity of Microcystis aeruginosa.

View Article and Find Full Text PDF

We investigated the long-term effects (6 years) of sediment improvement and submerged plant restoration of a subtropical shallow urban lake, Hangzhou West Lake China. To reveal the lake ecosystems variations, we analyzed the sediment properties, submerged macrophyte characteristics, sediment microorganisms, and benthic macroinvertebrate communities from 2015 to 2020. The ecological restoration project decreased sediment TP and OM, increased submerged macrophyte biomass and sediment microbial diversity, and improved the benthic macroinvertebrate communities in the restored area.

View Article and Find Full Text PDF

Restoration of submerged plants in eutrophic lakes can reduce nutrients and phytoplankton biomass in the water body. However, the effect of submerged plants on phytoplankton communities and their photosynthetic activity in situ are still poorly understood. Here, we studied the response of phytoplankton community structure and fluorescence parameters to different submerged plants coverage, the relationship of phytoplankton community and fluorescence parameters with submerged plants coverage and water physicochemical parameters were analysed in sampling area of Hangzhou West Lakes.

View Article and Find Full Text PDF

According to a spatial distribution analysis of phosphorus in sediments from Honghu Wetland, it was found that TP content in sediments at the mouth of Honghu Lake was 781.31-1955.84 mg·kg and the average value was(1287.

View Article and Find Full Text PDF

The community composition and biomass of phytoplankton in shallow lakes are impacted by many environmental factors including water quality physicochemical parameters, land use in the watershed, and lake morphology. However, few studies have simultaneously evaluated the relative importance of these factors on the effect of community composition and biomass of phytoplankton. The relative importance of the water quality physicochemical parameters (water temperature [WT], total nitrogen [TN], total phosphorus [TP], pH, dissolved oxygen [DO], electrical conductivity [EC], turbidity and Secchi depth [SD]), land use (built-up land, farmland, waters, forest, grassland, and unused land) in the watershed, and lake morphology (area and depth) on the composition and biomass of phytoplankton communities were assessed in 29 subtropical shallow lakes in Wuhan, China, during different seasons from December 2017 to November 2018.

View Article and Find Full Text PDF

During decay, the sediment microenvironment and water quality are severely affected by excessive proliferation of harmful algae such as filamentous green algae (FGA). The frequency of this FGA is increased through global warming and water eutrophication. In the present study, the degradation processes of a common advantage FGA Cladophora oligoclora and its effect on nitrogen and phosphorus nutrient structure and bacterial community composition at the sediment-water interface were investigated by stable isotope labelling and high-throughput sequencing.

View Article and Find Full Text PDF

Polyphenols are allelochemicals secreted by aquatic plants that effectively control cyanobacteria blooms. In this study, sensitive response parameters (including CFPs) of were explored under the stress of different polyphenols individually and their combination. The combined effects on were investigated based on the most sensitive parameter and cell densities.

View Article and Find Full Text PDF

Submerged macrophyte restoration is the key stage in the reestablishment of an aquatic ecosystem. Previous studies have paid considerable attention to the effect of multiple environmental factors on submerged macrophytes. Meanwhile, few studies have been conducted regarding the spatial and seasonal characteristics of water and sediment properties and their long-term relationship with submerged macrophytes after the implementation of the submerged macrophytes restoration project.

View Article and Find Full Text PDF

The effects of maifanite on the physiological and phytochemical process of submerged macrophytes Hydrilla verticillate (H.verticillata) were investigated for the first time in the study. The growth index: plant biomass, root length, plant height and leaf spacing, and physiological and phytochemical indexes: chlorophyll, soluble protein, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) content and vitality of the roots of H.

View Article and Find Full Text PDF
Article Synopsis
  • Increasing aluminum use globally poses risks to aquatic systems, particularly affecting submerged plants like Vallisneria natans, which have been understudied.
  • Aquatic experiments revealed that aluminum significantly inhibits seed germination and seedling growth, with toxicity increasing at concentrations above 0.3 mg/L, showing variations in accumulation between roots and leaves.
  • The presence of aluminum also alters nitrogen and phosphorus levels in sediments and affects the microbial community involved in these nutrient cycles, emphasizing the need for ecological evaluations and restoration strategies in affected shallow eutrophic lakes.
View Article and Find Full Text PDF

Sediment phosphorus (P) is the main source of endogenous P for lake eutrophication. An in-situ combined technology for determination the removal effect of sediment P in all fractions was first developed using the novel modified maifanite (MMF) and submerged macrophytes in this study. MMF was synthesized using an acidification process (2.

View Article and Find Full Text PDF

The restoration of submerged plants is critical for the reconstruction of eutrophic lake ecosystems. The growth of submerged plants is influenced by many factors. For the first time in this study, the effects of silicate-mineral maifanite supplement on the growth, physiological and phytochemical process of Vallisneria spiralis (V.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the impact of aluminum (Al) input from human activities on sediment in two eutrophic lakes in China, focusing on Al migration patterns and its relationship with sediment nutrients.
  • The research found significant variations in Al content in sediments, with higher concentrations in more disturbed lake areas, and overall Al levels ranging from 0.463 to 40.442 g/kg in the lakes studied.
  • Additionally, the study highlights that sediment characteristics, including total nitrogen and phosphorus, influence the distribution of Al, providing valuable insights for assessing Al-related risks in aquatic ecosystems.
View Article and Find Full Text PDF

Sediment phosphorus (P) removal is crucial for the control of eutrophication, and the in-situ adsorption is an essential technique. In this study, modified maifanite (MMF) prepared by acidification, alkalization, salinization, calcination and combined modifications, respectively, were first applied to treat sediment P. The morphology and microstructure of MMF samples were characterized by X-ray fluorescence (XRF), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET).

View Article and Find Full Text PDF

Supercoiling-sensitive quantitative PCR (ss-qPCR) is a sensitive technique to detect DNA damage in cultured animal cells and cultured/clinical human cells in vitro. In this study, we investigated whether the ss-qPCR method can be applied as a sensitive means to detect oxidative DNA damage in unicellular organisms. We used the model cyanobacterium Synechococcus elongatus PCC 7942 as a test organism and HO as an exogenetic oxidative toxicant.

View Article and Find Full Text PDF

Excessive proliferation of filamentous green algae (FGA) has been considered an important factor resulting in the poor growth or even decline of submerged macrophytes. However, there is a lack of detailed information regarding the effect of decaying FGA on submerged macrophytes. This study aimed to investigate whether the decomposing liquid from Cladophora oligoclona negatively affects Hydrilla verticillata turion germination and seedling growth.

View Article and Find Full Text PDF
Article Synopsis
  • Submerged vegetation biomass fluctuates significantly during the initial phase of vegetation restoration in shallow lakes, affecting the transition to a macrophyte-dominant state.
  • The study analyzed sediment nitrogen characteristics and bacteria in West Lake, revealing higher sediment total nitrogen (TN) and ammonium nitrogen (NH-N) levels during periods of low vegetation biomass, which can hinder macrophyte growth.
  • The bacterial community composition changed with vegetation levels, with some beneficial denitrifying bacteria decreasing during low biomass periods, contributing to an accumulation of ammonia that could impede further vegetation recovery.
View Article and Find Full Text PDF

The removal efficiency of sediment phosphorus (P) with the in-situ synergistic effect of modified bentonite granules (MBG) and Vallisneria spiralis (V. spiralis) in West Lake, Hangzhou, China was investigated for the first time in the study. CMBG-Na10-450 (nitrification (10% NaCO)-calcination (450 °C) combined modification) was prepared and characterized, and the removal effects of sediment P of all fractions with CMBG-Na10-450 and V.

View Article and Find Full Text PDF

Aluminate flocculants are employed widely in water treatment for precipitating suspended solids and emergency treatment of algal blooms in eutrophic lake, but the residual aluminum (Al) may have phytotoxic effects on aquatic organisms after entering aquatic ecosystems. To elucidate the potential impacts of Al on turion germination and early growth in Potamogeton crispus, we conducted a mesocosm experiment using five Al concentrations (0 (control group), 0.3, 0.

View Article and Find Full Text PDF
Article Synopsis
  • Aluminate, commonly used as a flocculant in water treatment, can harm aquatic plants when residual aluminum accumulates past safe levels.
  • In studies conducted in West Lake, Hangzhou, the submerged plants Vallisneria natans and Hydrilla verticillata showed inhibited growth near areas with higher aluminum concentrations.
  • The results indicated significant stress in these plants, evidenced by changes in physiological parameters and higher accumulation of aluminum in their tissues, highlighting the need to manage aluminum levels to protect aquatic ecosystems.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongr88hk6vev0rjrv1d1nq4pp5lof272k1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once