Efficient charge transfer has always been a challenge in heterogeneous MOF-based photoredox catalysis due to the poor electrical conductivity of the MOF photocatalyst, the toilless electron-hole recombination, and the uncontrollable host-guest interactions. Herein, a propeller-like tris(3'-carboxybiphenyl)amine () ligand was synthesized to fabricate a 3D ZnO cluster-based Zn(II)-MOF photocatalyst, Zn(TCBA)(μ-HO)HO (), which was applied to efficient photoreductive H evolution and photooxidative aerobic cross-dehydrogenation coupling reactions of -aryl-tetrahydroisoquinolines and nitromethane. In , the ingenious introduction of the meta-position benzene carboxylates on the triphenylamine motif not only promotes to exhibit a broad visible-light absorption with a maximum absorption edge of 480 nm but also causes special phenyl plane twists with dihedral angles of 27.
View Article and Find Full Text PDF