Publications by authors named "Biyue Liu"

Background: In literature, the effect of the inflow boundary condition was investigated by examining the impact of the waveform and the shape of the spatial profile of the inlet velocity on the cardiac hemodynamics. However, not much work has been reported on comparing the effect of the different combinations of the inlet/outlet boundary conditions on the quantification of the pressure field and flow distribution patterns in stenotic right coronary arteries.

Method: Non-Newtonian models were used to simulate blood flow in a patient-specific stenotic right coronary artery and investigate the influence of different boundary conditions on the phasic variation and the spatial distribution patterns of blood flow.

View Article and Find Full Text PDF

Background: There are two major hemodynamic stresses imposed at the blood arterial wall interface by flowing blood: the wall shear stress (WSS) acting tangentially to the wall, and the wall pressure (WP) acting normally to the wall. The role of flow wall shear stress in atherosclerosis progression has been under intensive investigation, while the impact of blood pressure on plaque progression has been under-studied.

Method: The correlations of wall thickness (WT) with wall pressure (WP, blood pressure on the lumen wall) and spatial wall pressure gradient (WPG) in a human atherosclerotic right coronary artery were studied.

View Article and Find Full Text PDF

The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed.

View Article and Find Full Text PDF

A three dimensional mathematical model with a linear plaque growth function was developed to investigate the geometrical adaptation of atherosclerotic plaques in coronary arteries and study the influences of flow wall shear stress (WSS), blood viscosity and the inlet flow rate on the growth of atherosclerotic plaques using computational plaque growth simulations. The simulation results indicated that the plaque wall thickness at the neck of the stenosis increased at a decreasing rate in the atherosclerosis progression. The simulation results also showed a strong dependence of the plaque wall thickness increase on the blood viscosity and the inlet flow rate.

View Article and Find Full Text PDF

The influence of stenosis on the pulsatile blood flow pattern in curved arteries with stenosis at inner wall was investigated by computer simulations. Numerical calculations were performed with various values of physiological parameters to examine the effect of a stenosis on the hemodynamic characteristics such as secondary flow, flow separation, wall shear stress (WSS) and pressure drop. The results demonstrated that when the severity of a stenosis at the inner wall of a curved artery reaches a certain level, the flow pattern in the downstream of the artery shows a dramatic change compared to that of a curved artery with no stenosis.

View Article and Find Full Text PDF