Publications by authors named "Biying Qin"

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the accumulation of amyloid β protein (Aβ) and the hyper-phosphorylation of the microtubule-associated protein Tau. The ubiquitin-proteasome system (UPS) plays a pivotal role in determining the fate of proteins, and its dysregulation can contribute to the buildup of Aβ and Tau. Deubiquitinating enzymes (DUBs), working in conjunction with activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), actively maintain the delicate balance of protein homeostasis.

View Article and Find Full Text PDF

Deubiquitination is the reverse process of ubiquitination, an important protein post-translational modification. Deubiquitination is assisted by deubiquitinating enzymes (DUBs), which catalyze the hydrolysis and removal of ubiquitin chains from targeted proteins and play an important role in regulating protein stability, cell signaling transduction, and programmed cell death. Ubiquitin-specific peptidases 25 and 28 (USP25 and USP28), important members of the USP subfamily of DUBs, are highly homologous, strictly regulated, and closely associated with various diseases, such as cancer and neurodegenerative diseases.

View Article and Find Full Text PDF

Ubiquitination is one of the most important post-translational protein modifications; the linking of the 76-amino-acid polypeptide ubiquitin dictates protein fate. Deubiquitinating enzymes (DUBs) can specifically remove ubiquitin attached to substrate proteins, thereby stabilizing the protein and preventing its degradation through the proteasome. The balance between ubiquitination and deubiquitination plays a key role in maintaining protein function and in regulating cellular homeostasis.

View Article and Find Full Text PDF

As a deubiquitination (DUB) enzyme, ubiquitin-specific protease 13 (USP13) is involved in a myriad of cellular processes, such as mitochondrial energy metabolism, autophagy, DNA damage response, and endoplasmic reticulum-associated degradation (ERAD), by regulating the deubiquitination of diverse key substrate proteins. Thus, dysregulation of USP13 can give rise to the occurrence and development of plenty of diseases, in particular malignant tumors. Given its implications in the stabilization of disease-related proteins and oncology targets, considerable efforts have been committed to the discovery of inhibitors targeting USP13.

View Article and Find Full Text PDF