Harmonics up to the 18th order are generated from solid targets by focusing 2 mJ, 50 fs pulses at 800 nm to a spot size of 1.7 μm (FWHM). To our knowledge, this is the first demonstration of high-harmonic generation with a very short focal length paraboloid (f/1.
View Article and Find Full Text PDFWe investigate the production of electron beams from the interaction of relativistically-intense laser pulses with a solid-density SiO(2) target in a regime where the laser pulse energy is approximately mJ and the repetition rate approximately kHz. The electron beam spatial distribution and spectrum were investigated as a function of the plasma scale length, which was varied by deliberately introducing a moderate-intensity prepulse. At the optimum scale length of lambda/2, the electrons are emitted in a collimated beam having a quasimonoenergetic distribution that peaked at approximately 0.
View Article and Find Full Text PDFA vacuum-free ultrafast laser-based x-ray source is demonstrated. Hard x-rays up to 80KeV are generated from Cu, Mo, Ag, Sn, and Ge targets in a laminar helium flow surrounded by atmosphere using tightly focused 33fs, 3mJ laser pulses. X-ray spectra, conversion efficiencies, and source sizes are presented.
View Article and Find Full Text PDFWe report the first hard X-ray source driven by a femtosecond fiber laser. The high energy fiber CPA system incorporated a 65mum LMA fiber amplifying stage which provided 300-fs recompressed pulses and diffraction limited beam quality with M(2) < 1.07.
View Article and Find Full Text PDFEfficient generation of extreme UV (EUV) light at lambda = 13.5 nm from a bulk Sn target has been demonstrated by using a fiber laser. The conversion efficiency from the 1064 nm IR to the EUV was measured to be around 0.
View Article and Find Full Text PDFLasers that provide an energy encompassed in a focal volume of a few cubic wavelengths (lambda3) can create relativistic intensity with maximal gradients using minimal energy. With particle-in-cell simulations we found that single 200-as pulses could be produced efficiently in a lambda3 laser pulse reflection by means of deflection and phase compression caused by the coherent motion of the plasma electrons that emit these pulses. This novel technique is efficient (approximately 10%) and can produce single attosecond pulses from the millijoule to the joule level.
View Article and Find Full Text PDFNew information concerning the photochemical dynamics of bacteriorhodopsin (BR) is obtained by impulsively stimulating emission from the reactive fluorescent state. Depletion of the excited-state fluorescence leads to an equal reduction in production of later photoproducts. Accordingly, chromophores which are forced back to the ground state via emission do not continue on in the photocycle, conclusively demonstrating that the fluorescent state is a photocycle intermediate.
View Article and Find Full Text PDF