We propose a light transparency effect induced by coherent feedback. By studying a system comprising a linear optical cavity controlled by a linear coherent feedback loop, we show that the optical signal field passing through the system cavity exhibits novel transparency behaviors. Unidirectional coupling between the system and its feedback control loop enables the group velocity and transmission rate to be tuned separately, thus maintaining the unity transmission rate when the group velocity is significantly suppressed.
View Article and Find Full Text PDFNoise usually has an unwelcome influence on system performance. For instance, noise inevitably affects the low-frequency mechanical freedom in optomechanical experiments. However, we investigate here the beneficial effects of thermal noise on a basic optomechanical system with parametric instability.
View Article and Find Full Text PDFWe investigate the effective interaction between two microwave fields, mediated by a transmon-type superconducting artificial atom which is strongly coupled to a coplanar transmission line. The interaction between the fields and atom produces an effective cross-Kerr coupling. We demonstrate average cross-Kerr phase shifts of up to 20 degrees per photon with both coherent microwave fields at the single-photon level.
View Article and Find Full Text PDFWe show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications.
View Article and Find Full Text PDF