Publications by authors named "Biwei Huang"

A series of zinc-magnesium mixed aluminosilicate glasses with the molar composition (1-)MgO·ZnO·AlO·2.5SiO, where = 0.00, 0.

View Article and Find Full Text PDF

In many scientific fields, such as economics and neuroscience, we are often faced with nonstationary time series, and concerned with both finding causal relations and forecasting the values of variables of interest, both of which are particularly challenging in such nonstationary environments. In this paper, we study causal discovery and forecasting for nonstationary time series. By exploiting a particular type of state-space model to represent the processes, we show that nonstationarity helps to identify causal structure and that forecasting naturally benefits from learned causal knowledge.

View Article and Find Full Text PDF

We study the problem of causal structure learning in linear systems from observational data given in multiple domains, across which the causal coefficients and/or the distribution of the exogenous noises may vary. The main tool used in our approach is the principle that in a causally sufficient system, the causal modules, as well as their included parameters, change independently across domains. We first introduce our approach for finding causal direction in a system comprising two variables and propose efficient methods for identifying causal direction.

View Article and Find Full Text PDF

We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear systems; Granger causal regression; a multivariate autoregressive model with a permutation test; the Group Iterative Multiple Model Estimation (GIMME) algorithm; the Ramsey et al. non-Gaussian methods; two non-Gaussian methods by Hyvärinen and Smith; a method due to Patel et al.

View Article and Find Full Text PDF

Discovery of causal relationships from observational data is a fundamental problem. Roughly speaking, there are two types of methods for causal discovery, constraint-based ones and score-based ones. Score-based methods avoid the multiple testing problem and enjoy certain advantages compared to constraint-based ones.

View Article and Find Full Text PDF

We address two important issues in causal discovery from nonstationary or heterogeneous data, where parameters associated with a causal structure may change over time or across data sets. First, we investigate how to efficiently estimate the "driving force" of the nonstationarity of a causal mechanism. That is, given a causal mechanism that varies over time or across data sets and whose qualitative structure is known, we aim to extract from data a low-dimensional and interpretable representation of the main components of the changes.

View Article and Find Full Text PDF

It is commonplace to encounter nonstationary or heterogeneous data, of which the underlying generating process changes over time or across data sets (the data sets may have different experimental conditions or data collection conditions). Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper we develop a principled framework for causal discovery from such data, called Constraint-based causal Discovery from Nonstationary/heterogeneous Data (CD-NOD), which addresses two important questions.

View Article and Find Full Text PDF