Publications by authors named "Bitya Raphael"

The inbred mouse strain C57BL/6 is commonly used for the generation of transgenic mouse and is a well established strain in bone research. Different vendors supply different substrains of C57BL/6J as wild-type animals when genetic drift did not incur any noticeable phenotype. However, we sporadically observed drastic differences in the bone phenotype of "WT" C57BL/6J mice originating from different labs and speculated that these variations are attributable, at least in part, to the variation between C57BL/6J substrains, which is often overlooked.

View Article and Find Full Text PDF

Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others.

View Article and Find Full Text PDF

Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2.

View Article and Find Full Text PDF

Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures.

View Article and Find Full Text PDF