Perennial herbs of seasonal climates invest carbon into belowground storage organs (e.g. rhizomes) to support growth when photosynthetic acquisition cannot cover demands.
View Article and Find Full Text PDFBackground And Aims: Several lines of evidence indicate that carbohydrate storage in plant below-ground organs might be positively related to genome size because both these plant properties represent resource sinks and can affect cell size, cell cycle time, water-use efficiency and plant growth. However, plants adapted to disturbance, such as root sprouters, could be an exception because their strategy would require higher carbohydrate reserves to fuel biomass production but small genomes to complete their cell cycles faster.
Methods: We used data from a field survey to test the relationship between genome size and the probability of root sprouting ability in 172 Central European herbaceous species.
Premise: Root-sprouting (RS) is an evolutionarily independent alternative to axillary stem branching for a plant to attain its architecture. Root-sprouting plants are better adapted to disturbance than non-RS plants, and their vigor is frequently boosted by biomass removal. Nevertheless, RS plants are rarer than plants that are not root-sprouters, possibly because they must overcome developmental barriers such as intrinsic phytohormonal balance or because RS ability is conditioned by injury to the plant body.
View Article and Find Full Text PDFCommunity-level studies linking plant mycorrhizal status to environment usually do not account for within-plot mycorrhizal status variability; thus, patterns of plant mycorrhizal status diversity are largely unknown. Here, we assessed the relative importance of within- and between-plot variability components in mycorrhizal status and examined how plant mycorrhizal status diversity is related to soil nutrient availability. We hypothesised larger between-plot variability in mycorrhizal status and higher plant mycorrhizal status diversity in P-poor soils.
View Article and Find Full Text PDFBackground And Aims: Plant tissue nitrogen (N) and phosphorus (P) and genome traits, such as genome size and guanine-cytosine (GC) content, scale with growth or metabolic rates and are linked to plant ecological strategy spectra. Tissue NP stoichiometry and genome traits are reported to affect plant growth, metabolic rates or ecological strategies in contrasting ways, although the elemental costs for building and maintaining DNA are typically overlooked.
Methods: We formulated stoichiometry- and ecology-based predictions on the relationship between genome size and GC content to tissue N, P and N : P and tested them on a set of 130 herbaceous species from a temperate grassland using ordinary, phylogenetic and quantile regression.
Plant Biol (Stuttg)
April 2022
A bud bank is a pool of dormant meristems that enable plants to resprout after injury. While the bud bank on stem organs is established prior to injury as the stem grows, the bud bank on roots is considered at least partly formed as a response to disturbance events. To date, only woody species have been examined, and the establishment of reparative buds after injury without connection to the root vascular system has been confirmed; for herbs, no data are available.
View Article and Find Full Text PDFPlant mycorrhizal status (a trait indicating the ability to form mycorrhizas) can be a useful plant trait for predicting changes in vegetation influenced by increased fertility. Mycorrhizal fungi enhance nutrient uptake and are expected to provide a competitive advantage for plants growing in nutrient-poor soils; while in nutrient-rich soils, mycorrhizal symbiosis may be disadvantageous. Some studies in natural systems have shown that mycorrhizal plants can be more frequent in P and N-poor soils (low nutrient availability) or Ca and Mg-high (high pH) soils, but empirical support is still not clear.
View Article and Find Full Text PDFPhylogenetic diversity quantification is based on indices computed from phylogenetic distances among species, which are derived from phylogenetic trees. This approach requires phylogenetic expertise and available molecular data, or a fully sampled synthesis-based phylogeny. Here, we propose and evaluate a simpler alternative approach based on taxonomic coding.
View Article and Find Full Text PDF