Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines.
View Article and Find Full Text PDFSurface modification layer of a silicon substrate has been used to enhance the performance of graphene field-effect transistors (FETs). In this report, ultrathin and chemically robust polymer brush was used as a surface modification to enhance the gas sensing properties of graphene FETs. The insertion of the polymer brush decreased substrate-induced doping of graphene.
View Article and Find Full Text PDF