Developing an oral in situ-forming hydrogel that targets the inflamed intestine to suppress bleeding ulcers and alleviate intestinal inflammation is crucial for effectively treating ulcerative colitis (UC). Here, inspired by sandcastle worm adhesives, we proposed a water-immiscible coacervate (EMNs-gel) with a programmed coacervate-to-hydrogel transition at inflammatory sites composed of dopa-rich silk fibroin matrix containing embedded inflammation-responsive core-shell nanoparticles. Driven by intestinal peristalsis, the EMNs-gel can be actuated forward and immediately transform into a hydrogel once contacting with the inflamed intestine to yield strong tissue adhesion, resulting from matrix metalloproteinases (MMPs)-triggered release of Fe from embedded nanoparticles and rearrangement of polymer network of EMNs-gel on inflamed intestine surfaces.
View Article and Find Full Text PDFNoninvasive treatment of inflammatory bowel disease with lower gastrointestinal bleeding is a major clinical challenge. In this study, we designed an orally targeted microsphere based on sunflower pollen microcapsules to localize the site of inflammatory injury and promote hemostasis and tissue repair. Due to the Eudragit and ascorbate palmitate coatings, EL/AP@PS(t+Dex) demonstrates pH- and enzyme-responsive release of loaded drugs and helps to resist the harsh environment of the gastrointestinal tract.
View Article and Find Full Text PDFGlobal public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis.
View Article and Find Full Text PDFArterial thrombosis is a critical thrombotic disease that poses a significant threat to human health. However, the existing clinical treatment of arterial thrombosis lacks effective targeting and precise drug release capability. In this study, we developed a system for targeted delivery and on-demand release in arterial thrombosis treatment.
View Article and Find Full Text PDFThe diabetic chronic wound healing is extremely restricted by issues such as hyperglycemia, excessive exudate and reactive oxygen species (ROS), and bacterial infection, causing significant disability and fatality rate. Herein, the chitosan/silk fibroin nanofibers-based hierarchical 3D sponge (CSSF-P/AuGCs) with effective exudate transfer and wound microenvironment modulation are produced by integrating cascade reactor (AuGC) into sponge substrates with parallel-arranged microchannels. When applied to diabetic wounds, the uniformly parallel-arranged microchannels endow CSSF-P/AuGCs with exceptional exudate absorption capacity, keeping the wound clean and moist; additionally, AuGCs efficiently depletes glucose in wounds to generate HO, which is then converted into HClO via cascade catalytic reaction to eliminate bacterial infection and reduce inflammation.
View Article and Find Full Text PDFOptimal wound healing requires a wet microenvironment without over-hydration. Inspired by capillarity and transpiration, we have developed a sandwich-like fibers/sponge dressing with continuous exudate drainage to maintain appropriate wound moisture. This dressing is prepared by integrating a three-layer structure using the freeze-drying method.
View Article and Find Full Text PDFTissue adhesives have been widely used in biomedical applications. However, the presence of a hydrated layer on the surface of wet tissue severely hinders their adhesion capacities, resulting in ineffective wound treatment. To address this issue, a dry particle dressing (plas@SF/tann-hydro-pwd) capable of removing the hydrated layer and converting in situ to bioadhesives (plas@SF/tann-hydro-gel) was fabricated via simple physical mixing based on the hydrophobic-hydrogen bonding synergistic effect and Schiff-base reaction.
View Article and Find Full Text PDFUncontrolled bleeding is the leading cause of death, and the death risk of bleeding from coagulopathy is even higher. By infusing the relevant coagulation factors, bleeding in patients with coagulopathy can be clinically treated. However, there are not many emergency hemostatic products accessible for coagulopathy patients.
View Article and Find Full Text PDFSkin wound healing in dynamic environments remains challenging. Conventional gels are not ideal dressing materials for wound healing due to difficulties in completely sealing wounds and the inability to deliver drugs quickly and precisely to the injury. To tackle these issues, we propose a multifunctional silk gel that rapidly forms strong adhesions to tissue, has excellent mechanical properties, and delivers growth factors to the wound.
View Article and Find Full Text PDFResearch (Wash D C)
May 2023
Efficient hemostasis during emergency trauma with massive bleeding remains a critical challenge in prehospital settings. Thus, multiple hemostatic strategies are critical for treating large bleeding wounds. In this study, inspired by bombardier beetles to eject toxic spray for defense, a shape-memory aerogel with an aligned microchannel structure was proposed, employing thrombin-carrying microparticles loaded as a built-in engine to generate pulse ejections for enhanced drug permeation.
View Article and Find Full Text PDFComplex yet lethal wounds with uncontrollable bleeding hinder conventional hemostats from clotting blood at the source or deep sites of injury vasculature, thereby causing massive blood loss and significantly increased mortality. Inspired by the attack action of torpedoes, we synthesized microcluster (MC) colloidosomes equipped with magnetic-mediated navigation and "blast" systems to deliver hemostats into the cavity of vase-type wounds. CaCO/FeO (CF) microparticles functionalized with Arg-Gly-Asp (RGD) modified polyelectrolyte multilayers were co-assembled with oppositely charged zwitterionic carbon dots (CDs) to form MC colloidosomes, which were loaded with thrombin and protonated tranexamic acid (TXA-NH ).
View Article and Find Full Text PDFTraumatic hemorrhage can be a fatal event, particularly when large quantities of blood are lost in a short period of time. Therefore, hemostasis has become a crucial part of emergency treatment. For small wounds, hemostasis can be achieved intrinsically depending on the body's own blood coagulation mechanism; however, for large-area wounds, particularly battlefield and complex wounds, materials delivering rapid and effective hemostasis are required.
View Article and Find Full Text PDFSevere bleeding in perforating and inflected wounds with forky cavities or fine voids encountered during prehospital treatments and surgical procedures is a complex challenge. Therefore, we present a novel hemostatic strategy based on magnetic field-mediated guidance. The biphasic Janus magnetic particle (MSS@FeO-T) comprised aggregates of α-FeO nanoparticles (FeO NPs) as the motion actuator, negatively modified microporous starch (MSS) as the base hemostatic substrate, and thrombin as the loaded hemostatic drug.
View Article and Find Full Text PDFOverexploitation of antibiotics increases the emergence of multidrug-resistant agents (MDRAs), which may potentially cause a global crisis with severe health consequences. Hence, there is great demand for next-generation antibacterial platforms based on antibiotic-free strategies or targeted therapies to mitigate the emergence of MDRAs. Herein, an all-in-one hollow nanoworm (A-Fe/AuAg@PDA) is developed with a core comprising citrate-capped Au-Ag nanoparticles (Cit-AuAg NPs) loaded with FeO and an l-arginine (L-Arg)-modified polydopamine (PDA) outer shell, possessing exceptional magnetic-targeting ability and a photothermal therapeutic effect.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2021
Many approaches and technologies have been developed as treatments for microsporidian, infections but effective, broad-spectrum, and sustainable therapeutic approaches have not been found. Silver nanoparticles (AgNPs) have antimicrobial activity and are widely used against many different pathogens. AgNPs provide an opportunity to develop formulations that will control microsporidia.
View Article and Find Full Text PDFThe increase in the number of resistant bacteria caused by the abuse of antibiotics and the emergence of biofilms significantly reduce the effectiveness of antibiotics. Bacterial infections are detrimental to our life and health. To reduce the abuse of antibiotics and treat biofilm-related bacterial infections, a biomimetic nano-antibacterial system, RBCM-NW-G namely, that controls the release of antibiotics through near infrared was prepared.
View Article and Find Full Text PDFTimely antibacterial treatment of wounds reduces the probability of wound infection and promotes wound healing. However, the materials used to treat wounds often fail to provide both sterilization (especially for super bacteria) and moisture, and some may even cause secondary injury to the wound. In this study, gold nanoparticles (Au NPs) of average grain diameter of 3 ± 1 nm were prepared using egg white as the reductant.
View Article and Find Full Text PDFHydrogels with self-healing capacity can undergo self-repair, establishing safer and longer-lasting products. Hydrogel wound dressings showing self-healing capacity can prolong the lifespan of the material and provide better wound protection. Therefore, in this study, Schiff base reactions (reversible imine linkages) were utilized to design injectable self-healing hydrogels with chitosan and konjac glucomannan.
View Article and Find Full Text PDFWound infection caused by multiantibiotic-resistant bacteria has become a serious problem, and more effective antibacterial agents are required. Herein, we report the preparation of wound dressings using the biocompatible chitosan (CS) as a reducing and stabilizing agent in the synthesis of 2-mercapto-1-methylimidazole (MMT)-capped gold nanocomposites (CS-Au@MMT), with efficient antibacterial effects. The synergistic effects of AuNPs, MMT, and CS led to the disruption of bacterial membranes.
View Article and Find Full Text PDFDeveloping highly active and green antibacterial agents for pathogens, especially multidrug-resistant superbugs, is vital for solving the problem of serious antibiotic resistance. Herein, we report a unique system of gold nanoparticles coated with chicken egg white (CEW) and 2-mercapto-1-methylimidazole (MMT) as a novel antibacterial agent. The CEW was used to prepare the gold nanoparticles as a commercially available reducing and stabilizing agent, and then the MMT self-assembled on the surface of nanoparticles.
View Article and Find Full Text PDFBiofilms that are widely associated with persistent bacterial infections impose a heavy burden on patients primarily due to their formidable resistance to conventional antiseptic drugs and local immune defense. Here, we successfully synthesized functional gold nanocomposites (CS-Au@MMT) by reducing chloroauric acid in the presence of biocompatible chitosan polymers with cationic amine and the small molecule 2-mercapto-1-methylimidazole (MMT). The cationic amine allowed transport of the CS-Au@MMT to the negatively charged sites at the surface of bacterial cells though electrostatic adhesion, with synergistic effects from the gold nanoparticles and MMT then exerting a strong bactericidal effect to inhibit biofilm formation.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFA novel Konjac glucomannan/silver nanoparticle (KGM/AgNP) composite sponge was successfully prepared via a simple 2-step method for biomedical applications as wound-healing materials. First, AgNPs were prepared with green deoxidizer egg white. Then, KGM powder was added to the AgNP solution and stirred vigorously, and the composite sponge was obtained by freeze-drying.
View Article and Find Full Text PDFSilver inlaid with gold nanoparticles (Au-Ag NPs) prepared by using egg white with an average sized of 10 nm and homogeneous dispersion were tested and presented red fluorescence. Au-Ag NPs were loaded into chitosan as wound dressing (CS-Au-Ag). CS-Au-Ag released silver ions faster, in higher amount, and in a more durable manner than chitosan dressing loaded with silver nanoparticles with the same silver content (CS-Ag), consequently, showing enhanced antibacterial activity.
View Article and Find Full Text PDFSpongy composites with silver nanoparticles (AgNPs) were synthesized by freeze-drying a mixture of silver nitrate (AgNO) and chitosan-l-glutamic acid (CG) derivative loaded with hyaluronic acid (HA) solution. CG/AgNP spongy composites had an interconnected porous structure and rough surfaces. When AgNPs (5-20nm) were immobilized on these spongy composites, AgNP aggregation was dependent on AgNO concentration.
View Article and Find Full Text PDF