Adjuvant development and understanding the physicochemical properties of particles and interpreting the subsequent immunological responses is a challenge faced by many researchers in the vaccine field. We synthesized and investigated the physicochemical properties and immunogenicity of a library of multiple epitope self-adjuvant lipopeptides in a novel asymmetric arrangement. Vaccine candidates were synthesized using a combination of solid-phase peptide synthesis and copper-mediated click chemistry.
View Article and Find Full Text PDFPresent on the surface of antigen presenting cells (APCs), the mannose receptor (MR) has long been recognized as a front-line receptor in pathogen recognition. During the past decade many attempts have been made to target this receptor for applications including vaccine and drug development. In the present study, a library of vaccine constructs comprising fluorescently labeled mannosylated lipid-dendrimers that contained the ovalbumin CD4(+) epitope, OVA(323-339), as the model peptide antigen were synthesized using fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS).
View Article and Find Full Text PDF