In this study, improvement of the electro-Fenton process using Fe-MIL-88B along with the innovation in the reactor with the simultaneous rotation of the cathodes and anodes was carried out to remove Acid Blue 25. For this purpose, the Fe-MIL-88B nanocatalyst was synthesised by the thermal solvent method and was characterised by FT-IR, EDAX, XRD, and FESEM. For the experiments, an electrochemical cell with a useful volume of 1 L and rotating cathodes and anodes were used and nanoparticles were added to the system as a slurry.
View Article and Find Full Text PDFThis study examined the eradication of Tetracycline hydrochloride (TCH) antibiotic, an emerging pollutant, by utilizing eggshell membrane activated carbon (EMAC) and magnetite (FeO) nanocomposite in conjunction with the electroperoxone process employing the One Factor at a Time method (OFAT) in a baffled reactor. The nanocomposite was synthesized through the hydrothermal method using an autoclave, and its properties were assessed via XRD, FTIR, FESEM, EDAX Mapping, BET, and VSM analyses. The findings revealed that under optimal conditions (including a pollutant concentration of 300 mg/L, a natural pH of 6.
View Article and Find Full Text PDFThis paper investigates the effectiveness of two commercial micron zero-valent irons (mZVIs) in removing Sb(V) from antimony mine wastewater. The wastewater contains a range of complex components and heavy metal ions, including As(V), which can impact the removal efficiency of mZVI. The study aims to provide insights into actual working conditions and focuses on influencing factors and standard conditions.
View Article and Find Full Text PDFThe release of industrial dyes into the environment has recently increased, resulting in harmful effects on people and ecosystems. In recent years, the use of adsorbents in photocatalytic nanocomposites has attracted significant interest due to their low cost, efficiency, and eco-friendly physical and chemical characteristics. Herein, Acid Orange 7 (AO7) removal was investigated by photocatalytic degradation using Rice Rusk Biochar (RHB), Tin (IV) Oxide (SnO), and Iron Oxide (FeO) as heterogeneous nanocomposite.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2022
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects.
View Article and Find Full Text PDFThe hydrogen peroxide role in photocatalytic degradation of an anionic azo dye, Acid Orange 7 (AO7), was investigated in a slurry reactor. Commercial ZnO nanoparticles with an average size between 10 to 30 nm were used as catalysts. Optimum conditions for different parameters, including dye concentration (10-100 mg/L), catalyst concentration (0.
View Article and Find Full Text PDFThis study aimed to improve the speed of the electrochemical process by graphene oxide nanoparticle as a current accelerator in Acid Blue 25 removal from aqueous solutions. To do so, the effect of different parameters including pH, dye concentration, sodium persulfate concentration, the ratio of sodium persulfate to iron (II) sulfate concentration, current density, and the distance between electrodes was investigated on dye removal. Under optimal conditions of pH = 5, dye concentration = 200 mg/L, sodium persulfate concentration = 500 mg/L, iron (II) sulfate concentration = 100 mg/L, current density = 16.
View Article and Find Full Text PDFIn recent decades the electro-Fenton process has widely been utilized for removing recalcitrant compounds. However, this process is accompanied by several problems such as limited working pH range, production of significant amount of iron sludge, and incapability in reusing used iron ions. Hence, the heterogeneous electro-Fenton process is a convenient way to address these problems.
View Article and Find Full Text PDFElectro-peroxone is a novel advanced oxidation process that surpasses ozonation or peroxone because of its advantages. In this technology, combining ozone and hydrogen peroxide generated electrochemically leads to the production of hydroxyl radicals, which are the strongest oxidizing agents. In this study, a cylindrical reactor with a continuous circular flow using novel arrangements of electrodes was used to examine the effects of variant parameters on dye removal efficiency.
View Article and Find Full Text PDFThis study assessed the role of a new strain, GSN3, with biofilm-forming and phenol-degrading abilities. Three biofilm reactors were spiked with activated sludge (R1), green fluorescent plasmid (GFP) tagged GSN3 (R2), and their combination (R3). More than 99% phenol removal was achieved during four weeks in R3 while this efficiency was reached after two and four further operational weeks in R2 and R1, respectively.
View Article and Find Full Text PDFIn this study, a baffled photocatalytic reactor was used for the treatment of colored wastewater containing the azo dye of Acid Orange 52 (AO52). A study on the active species of the photocatalytic process using TiO nanoparticles indicated that hydroxyl radical and superoxide have the greatest contribution to the dye degradation process respectively. Given that a level of biological oxygen demand/chemical oxygen demand (BOD/COD) equal to 0.
View Article and Find Full Text PDFBackground: Biochars are the new generation of sustainable soil amendments which may be applied both to fertilize and remediate the impacted soils. The aim of current research has been synthesis and characterization of pulp and paper-derived biochars and determination of their mechanisms in simultaneous immobilization of heavy metals (Cu, Pb, and Zn) within contaminated soil. In a novel attempt, three different solid wastes of Mazandaran Wood and Paper Industries (barks and effluent sludge) were utilized to produce biochars.
View Article and Find Full Text PDFIn this study, the efficiency improvement of three moving bed biofilm reactors (MBBRs) was investigated by inoculation of activated sludge cells (R1), mixed culture of eight strong phenol-degrading bacteria consisted of Pseudomonas spp. and Acinetobacter spp. (R2) and the combination of both (R3).
View Article and Find Full Text PDFIn this study, surface soils of the Bama Pb-Zn mine-impacted area were sampled for an area surrounding the mineral processing plant. After collecting 65 samples and analyzing them for initial Cu, Pb, Zn, and Cd metal contents, the area was zonated based on the concentration distribution using ordinary kriging in R. A single homogenous sample was prepared by mixing equal weights of each sample as being representative of the whole impacted area (S).
View Article and Find Full Text PDFMoving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e.
View Article and Find Full Text PDFExperimental findings of sonophotocatalytic process were used in degradation of hydroquinone to assess kinetic modeling and determine the effect of various active radical species. First, the effects of three photocatalytic, sonocatalytic, and sonophotocatalytic processes were studied for hydroquinone removal to determine kinetic constants and calculate the activation energy of reactions, and then the selected process was evaluated to determine active radical species. The reactor was composed of two parts, one included ultrasonic probe (sonocatalytic part) with powers 22, 80, and 176 W and the second part was the location of UV lamp (photocatalytic part) with tubular flow and power 15 W.
View Article and Find Full Text PDFDecolorization of wastewater of industries which consume dye is an environmental priority. Electrocoagulation and electroflotation methods are appropriate for treatment of these wastewaters. This study investigates the effect of four parameters, electrical conductivity, current density, initial dye concentration, and initial pH, on the performance of a simultaneous electrocoagulation/electroflotation system for removal of Acid Red 14.
View Article and Find Full Text PDFBackground: In this study, concrete application as a substrate for TiO2 nano powder immobilization in heterogeneous photocatalytic process was evaluated. TiO2 immobilization on the pervious concrete surface was done by different procedures containing slurry method (SM), cement mixed method (CMM) and different concrete sealer formulations. Irradiation of TiO2 was prepared by UV-A and UV-C lamps.
View Article and Find Full Text PDFAerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment.
View Article and Find Full Text PDF