Publications by authors named "Bit A"

Unlabelled: Attentional paradigm can have a significant influence on the processing and experience of positive and negative emotions. Attentional mechanism refers to the tendency to selectively attend to a particular stimulus while ignoring others. In the context of emotions, individuals may exhibit attentional biases towards either positive or negative emotional stimuli.

View Article and Find Full Text PDF

The analysis of degradation in the presence of cell death and migration is a critical aspect of research in various biological fields, such as tissue engineering, regenerative medicine, and disease pathology. In present study, numerical study of degradation of scaffold were performed in present of cells, cell apoptosis and cell migration. A poly electrolyte complex (PEC) silk fibroin scaffold was used for degradation study.

View Article and Find Full Text PDF

Background: The Deccan mahseer, Tor khudree (Sykes, 1839) is a potential game and food fish species belonging to the family cyprinidae and is categorized as endangered. Its distribution is restricted to southern part of India, specifically to Peninsular Rivers. This study is first to assess the genetic diversity and differentiation in Tor khudree by developing novel simple sequence repeat (SSR) markers.

View Article and Find Full Text PDF

Emotions are synchronizing responses of human brain while executing cognitive tasks. Earlier studies had revealed strong correlation between specific lobes of the brain to different types of emotional valence. In the current study, a comprehensive three-dimensional mapping of human brain for executing emotion specific tasks had been formulated.

View Article and Find Full Text PDF

Unlabelled: Attentional cognitive control regulates the perception to enhance human behaviour. The current study examines the atltentional mechanisms in terms of time and frequency of EEG signals. The cognitive load is higher for processing local attentional stimulus, thereby demanding higher response time (RT) with low response accuracy (RA).

View Article and Find Full Text PDF

The viscosity of fluid plays a major role in the flow dynamics of microchannels. Viscous drag and shear forces are the primary tractions for microfluidic fluid flow. Capillary blood vessels with a few microns diameter are impacted by the rheology of blood flowing through their conduits.

View Article and Find Full Text PDF

Cognitive function of human brain requires temporal execution of emotional or attentional tasks, or their inter-dependence influences. Smooth execution of such tasks requires spontaneous distribution of cognitive load at specific regions of brain based on its classification. A strong connectivity between peripheral sensors and central nervous system is thought to assist the cognitive load distribution effectively.

View Article and Find Full Text PDF

The present work had evaluated the effect of cryogenic treatment (233 K) on the degradation of polymeric biomaterial using a numerical model. The study on effect of cryogenic temperature on mechanical properties of cell-seeded biomaterials is very limited. However, no study had reported material degradation evaluation.

View Article and Find Full Text PDF

Precise estimation of genome size (GS) is vital for various genomic studies, such as deciding genome sequencing depth, genome assembly, biodiversity documentation, evolution, genetic disorders studies, duplication events etc. Animal Genome Size Database provides GS of over 2050 fish species, which ranges from 0.35 pg in pufferfish (Tetraodon nigroviridis) to 132.

View Article and Find Full Text PDF

3D bioprinting has emerged as a tool for developing in vitro tissue models for studying disease progression and drug development. The objective of the current study was to evaluate the influence of flow driven shear stress on the viability of cultured cells inside the luminal wall of a serpentine network. Fluid-structure interaction was modeled using COMSOL Multiphysics for representing the elasticity of the serpentine wall.

View Article and Find Full Text PDF

Solid supports like the extracellular matrix network are necessary for bone cell attachment and start healing in the damaged bone. Scaffolds which are made of different materials are widely used as a supportive structure in bone tissue engineering. In the current study, a 3D polycaprolactone/gelatin bone scaffold was developed by blending electrospinning and freeze-drying techniques for bone tissue engineering.

View Article and Find Full Text PDF

An ideal wound dressing material should enhance the wound healing process and must avoid bacterial contamination. In this study, the synergistic effect of graphene oxide (GO), silver (Ag) and magnesium (Mg) based silk electrospun nanofibrous film on wound healing was evaluated. It reports the influence of essential elements Mg and Ag during the skin regeneration process.

View Article and Find Full Text PDF

Fibroblast cell migration plays a crucial role in the wound-healing process. Hence, its quantitative investigation is important to understand the mechanism of the wound-healing process. The dynamic nature of the wound-healing process can be easily implemented using a microfluidic-based wound-healing assay.

View Article and Find Full Text PDF

This study examined neurocognitive mechanisms of prosocial and antisocial congruency in English sentences by conducting an electroencephalography experiment. Participants performed a judgment task whether prosocial and unsocial/antisocial nominal words were congruent or incongruent with the upcoming prosocial and antisocial verbal category of words in sentences (e.g.

View Article and Find Full Text PDF

During intervertebral disc degeneration (IVDD), due to endplate calcification, diminished oxygen and nutrient concentrations and accumulated lactate are present in the microenvironment of the nucleus pulposus (NP). The disadvantages of 3D layered culture include uneven oxygen and nutrient gradients. In the present study, to mimic the in vivo microenvironment of the NP, a 5-layered 3D culture was constructed using clinical haemostatic gelatine sponges and developed as a NP degeneration (NPD) model.

View Article and Find Full Text PDF

The application of 3D printing technologies fields for biological tissues, organs, and cells in the context of medical and biotechnology applications requires a significant amount of innovation in a narrow printability range. 3D bioprinting is one such way of addressing critical design challenges in tissue engineering. In a more general sense, 3D printing has become essential in customized implant designing, faithful reproduction of microenvironmental niches, sustainable development of implants, in the capacity to address issues of effective cellular integration, and long-term stability of the cellular constructs in tissue engineering.

View Article and Find Full Text PDF

Labeo rohita, one of the Indian major carps, is the most popular culture species in Indian subcontinent due to its consumer preference and delicacy. A selective breeding program for harvest body weight has resulted in an average genetic gain of 17% per generation. Transcriptome resource for this species is scanty.

View Article and Find Full Text PDF

Activin receptor type IIB (ActRIIB) is a transmembrane serine/threonine kinase receptor which plays a pivotal role in regulating the reproduction in vertebrates including teleost. Earlier studies have documented its importance in governing gonadal maturation in higher vertebrates. However, reports on the regulation of fish reproductive system by ActRIIB gene are still limited.

View Article and Find Full Text PDF

This review paper is primarily focused on bioprinting technology for biomedical applications. Bioprinting can be utilized for fabrication of wide range of tissue, based on which this chapter describes in detail its application in tissue regeneration. Further, the difficulties and potential in developing a construct for tissue regeneration are discussed herein.

View Article and Find Full Text PDF

Background: COVID-19 pandemic has currently no vaccines. Thus, the only feasible solution for prevention relies on the detection of COVID-19-positive cases through quick and accurate testing. Since artificial intelligence (AI) offers the powerful mechanism to automatically extract the tissue features and characterise the disease, we therefore hypothesise that AI-based strategies can provide quick detection and classification, especially for radiological computed tomography (CT) lung scans.

View Article and Find Full Text PDF

The complete mitogenome of Himalayan black bear (Ursus thibetanus laniger) from Indian Himalayan region was assembled following the modified approach of mitochondrial baiting and mapping using the next-generation sequencing reads. The complete mitogenome was of 16,556 bp long, consisted of 37 genes that contained 13 protein-coding genes, 22 tRNAs, 2 rRNAs and 1 control region. The complete base composition was 31.

View Article and Find Full Text PDF

The walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering ∼94% of estimated genome with 9.

View Article and Find Full Text PDF

Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring.

View Article and Find Full Text PDF