Publications by authors named "Biswadev Bishayi"

Staphylococcus aureus induced Septic arthritis is considered a medical concern. S.aureus binds TLR2 to induce an array of inflammatory responses.

View Article and Find Full Text PDF

Due to the urgent need to create appropriate treatment techniques, which are currently unavailable, LPS-induced sepsis has become a serious concern on a global scale. The primary active component in the pathophysiology of inflammatory diseases such as sepsis is the Gram-negative bacterial lipopolysaccharide (LPS). LPS interacts with cell surface TLR4 in macrophages, causing the formation of reactive oxygen species (ROS), TNF-α, IL-1β and oxidative stress.

View Article and Find Full Text PDF

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages.

View Article and Find Full Text PDF

In vivo studies identifying a role of TLR2 in septic arthritis models are lacking. TNF-α played as the most important proinflammatory cytokine, and connected directly to the pathogenesis of bacterial arthritis. IL-1β is another central mediator cytokine in arthritis.

View Article and Find Full Text PDF

The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection.

View Article and Find Full Text PDF

It is essential to revisit the global biodiversity, search for ethnopharmacologically relevant plants, and unveil their untapped potential to overcome the complications associated while treating infections triggered by multiple antibiotic-resistant . (L.) G.

View Article and Find Full Text PDF

Researches of recent past years have emphasized potential of antibiotics to improve septic arthritis but as multi-drug resistant strains like MRSA are emerging fast, new alternative therapeutic advances are high in demand. This study aims to figure out the role of neutrophils in regulating inflammatory responses of S. aureus induced septic arthritis while using TNF-α Ab or IL-1β Ab along with antibiotic gentamicin or both in combination.

View Article and Find Full Text PDF

The CXCL8/CXCR1 axis in conjoint with the free radicals and anti-oxidants dictates the severity of inflammation caused by the bacteria, Staphylococcus aureus. S.aureus mediated inflammatory processes is regulated by NF-κB and its product, iNOS.

View Article and Find Full Text PDF

Overexpression of Staphylococcus aureus mediated CXCL8/CXCR1 axis is a major cause of sepsis and severe inflammatory diseases. This chemokine acts conjointly with various pro-inflammatory and anti-inflammatory cytokines that govern the severity of inflammation. The effects of different combinations of exogenous cytokines on CXCR1 expression in macrophages remain undetermined.

View Article and Find Full Text PDF

Multi-organ dysfunction is one of the major reasons behind the high mortality of sepsis throughout the world. With the pathophysiology of sepsis remaining largely unknown, the uncontrolled reactive oxygen species (ROS) production along with the decreased antioxidants contributes to the progression toward septic shock. Being the effector cells of the innate immunity system, macrophages secrete both pro-inflammatory and anti-inflammatory mediators during inflammation.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) primarily affecting the synovial tissue, has emerged as a major concern leading to the pressing need to develop effective treatment strategies. In the affected synovial tissue, resident macrophages play a pivotal role in the pathogenesis of RA. TNF-α and IL-1β released from pro-inflammatory M1 synovial macrophages are the master regulators of chronic joint inflammation.

View Article and Find Full Text PDF

Septic arthritis is a joint disease caused by Staphylococcus aureus. Different macrophage populations contribute in various ways to control blood-borne infections and induce inflammatory responses. Macrophage tissue-resident niche is necessary for the suppression of chronic inflammation and may contribute to the pathogenesis of septic arthritis.

View Article and Find Full Text PDF

Septic arthritis is an inflammatory joint disease caused by S. aureus. Hematogenous entry of the bacteria to the synovium produces pro-inflammatory cytokines TGF-β and IL-6, which alter the Th17/Treg balance.

View Article and Find Full Text PDF

Microglial inflammatory responses play a central role in the pathogenesis of S. aureus induced brain infections. Upon activation, microglia produces free radicals (ROS/RNS) and disrupts the cellular antioxidant defense to combat invading microorganisms.

View Article and Find Full Text PDF

Septic arthritis is a destructive joint disease caused by Staphylococcus aureus. Synovial inflammation involved Th17 proliferation and down regulation of Treg population, thus resolution of inflammation targeting IL-17 may be important to control arthritis. Endogenous inhibition of IL-17 to regulate arthritic inflammation correlating with Th17/Treg cells TLR2 and TNFRs are not done.

View Article and Find Full Text PDF

The Gram-negative bacterial lipopolysaccharide (LPS)-induced sepsis has emerged as major concern worldwide due to the pressing need to develop its effective treatment strategies which is not available yet. LPS is the major causative agent in the pathogenesis of septic shock. In macrophages, LPS interacts with cell surface TLR4 leading to reactive oxygen species (ROS), TNF-α, IL-1β production, oxidative stress and markedly activated the MAPKs and NF-kB pathway.

View Article and Find Full Text PDF

Staphylococcus aureus induced brain abscess is a critical health concern throughout the developing world. The conventional surgical intervention could not regulate the abscess-induced brain inflammation. Thus further study over the alternative therapeutic strategy for treating a brain abscess is of high priority.

View Article and Find Full Text PDF

Anti-cytokine therapy is widely acknowledged as an anti-inflammatory technique to treat varied infectious diseases. TNF-α and IL-1β are major cytokines that regulate every aspect of the inflammatory process. However, the effects of single or dual cytokine neutralization on mediated CXCL8 secretion and CXCR1 expression in murine peritoneal macrophages remained noninvestigated.

View Article and Find Full Text PDF

Septic arthritis is a condition of bone disorder caused predominantly by Staphylococcus aureus. Following the bacterial entry activated immune cells specially macrophages and dendritic cells release pro-inflammatory mediators such as IL-6, TNF-α, IL-1β etc., which not only create an inflammatory microenvironment but also play crucial roles in the proliferation of different CD+ T cell subsets.

View Article and Find Full Text PDF

Microglial inflammation plays a pivotal role in the pathogenesis of S. aureus induced brain abscesses. The objective of this study was to regulate microglial activation by the combinatorial treatment of ciprofloxacin either with dexamethasone or celecoxib via targeting M1 and M2 polarization.

View Article and Find Full Text PDF

Microglial inflammation is the hallmark of S. aureus induced brain abscesses. Conventional antibiotic therapy could not regulate inflammation and the use of steroids in CNS infection remained controversial.

View Article and Find Full Text PDF

S.aureus induced septic arthritis remains a serious medical concern due to its rapidly progressive disease profile. The multidrug resistant nature of S.

View Article and Find Full Text PDF

Treatment of septic arthritis has become more challenging due to the rise of multidrug resistant strains of Staphylococcus aureus (S. aureus) in recent years. Failure of antibiotic therapies has compelled to initiate the search for new alternatives.

View Article and Find Full Text PDF

The contribution of Th17 and Treg in the pathogenesis of septic arthritis is well known. The imbalance of Th17/Treg ratio, especially the skewed CD4 T cell differentiation towards pathogenic Th17 lineage is a major reason that mediates bone damage through one of its prime cytokine member IL-17A. The neutralization of released IL-17A, as well as exogenous administration of IL-2 at a lower dose, was seen to be potent in dampening the inflammatory response in many cases.

View Article and Find Full Text PDF