Publications by authors named "Bisoyi H"

Photochromic molecules have remarkable potential in memory and optical devices, as well as in driving and manipulating molecular motors or actuators and many other systems using light. When photochromic molecules are introduced into carbon nanomaterials (CNMs), the resulting hybrids provide unique advantages and create new functions that can be employed in specific applications and devices. This review highlights the recent developments in diverse photochromic CNMs.

View Article and Find Full Text PDF

Microrobot swarms have seen increased interest in recent years due to their potentials for in vivo delivery and imaging with cooperative propulsion modes and enhanced imaging signals. Yet most swarms developed so far are limited to dense particle aggregates, far simpler than complicated three-dimensional assemblies of anisotropic particles. Here, we show via assembly path design that complex hollow tubular structures can be assembled from simple isotropic colloidal spheres and those complicated, metastable, microtubes can be formed from simple, energetically favorable colloidal membranes.

View Article and Find Full Text PDF

Although liquid crystal elastomers (LCEs) have demonstrated various applications in artificial muscles and soft robotics, their inherent flexibility and orientation-dependent forces limit their functions. For instance, LCEs can sustain a high actuation force when they contract but cannot elongate to drive loads with large displacements. In this study, it is demonstrated that photocontrollable elongation actuation with a large strain can be achieved in polydomain LCEs by programming the crease structures in a well-defined order to couple the actuation forces.

View Article and Find Full Text PDF

Multifunctional flexible sensors are the development trend of wearable electronic devices in the future. As the core of flexible sensors, the key is to construct a stable multifunctional integrated conductive elastomer. Here, ionic conductive elastomers (ICEs) with self-wrinkling microstructures are designed and prepared by in situ phase separation induced by a one-step polymerization reaction.

View Article and Find Full Text PDF

Materials with phototunable full-color circularly polarized luminescence (CPL) have a large storage density, high-security level, and enormous prospects in the field of information encryption and decryption. In this work, device-friendly solid films with color tunability are prepared by constructing Förster resonance energy transfer (FRET) platforms with chiral donors and achiral molecular switches in liquid crystal photonic capsules (LCPCs). These LCPCs exhibit photoswitchable CPL from initial blue emission to RGB trichromatic signals under UV irradiation due to the synergistic effect of energy and chirality transfer and show strong time dependence because of the different FRET efficiencies at each time node.

View Article and Find Full Text PDF

Overcoming the resistance to apoptosis and immunosuppression of tumor cells is a significant challenge in augmenting the effect of cancer immunotherapy. Pyroptosis, a lytic programmed cell-death pathway unlike apoptosis, is considered a type of immunogenic cell death (ICD) that can intensify the ICD process in tumor cells, releasing dramatically increased tumor-associated antigens and damage-associated molecular patterns to promote cancer immunotherapy. Herein, a tumor cell membrane-targeted aggregation-induced emission photosensitive dimer is found to be able to achieve highly efficient ICD under the synergistic effect of photodynamic and photothermal therapy.

View Article and Find Full Text PDF

Developing an artificial dynamic nanoscale molecular machine that dissipatively self-assembles far from equilibrium is fundamentally important but is significantly challenging. Herein, we report dissipatively self-assembling light-activated convertible pseudorotaxanes (PRs) that show tunable fluorescence and enable deformable nano-assemblies. A pyridinium-conjugated sulfonato-merocyanine derivative (EPMEH) and cucurbit[8]uril (CB[8]) form the 2EPMEH ⊂ CB[8] [3]PR in a 2:1 stoichiometry, which phototransforms into a transient spiropyran containing 1:1 EPSP ⊂ CB[8] [2]PR when exposed to light.

View Article and Find Full Text PDF

In nature, many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots. However, it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird. Herein, we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.

View Article and Find Full Text PDF

Magnetic fluids have advantages such as flow ability and solid-like property in strong magnetic fields, but have to suffer from the tradeoff between suspension stability and flow resistance. In this work, a thermal/photo/magnetorheological water-based magnetic fluid is fabricated by using oleic acid-coated Fe O (Fe O @OA) nanoparticles as the magnetic particles and the amphiphilic penta block copolymer (PTMC-F127-PTMC)-based aqueous solution as the carrier fluid. Due to the hydrophobic self-assembly between Fe O @OA and PTMC-F127-PTMC, the Newtonian-like magnetic fluid has outstanding long-term stability and reversible rheological changes between the low-viscosity flow state and the 3D gel structure.

View Article and Find Full Text PDF

Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo. Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence.

View Article and Find Full Text PDF

Microwave transmission lines in wearable systems are easily damaged after frequent mechanical deformation, posing a severe threat to wireless communication. Here, we report a new strategy to achieve stretchable microwave transmission lines with superior reliability and durability by integrating a self-healable elastomer with serpentine-geometry plasmonic meta-waveguide to support the spoof surface plasmon polariton (SSPP). After mechanical damage, the self-healable elastomer can autonomously repair itself to maintain the electromagnetic performance and mechanical strength.

View Article and Find Full Text PDF

Dynamic sequential control of photoluminescence by supramolecular approaches has become a great issue in supramolecular chemistry. However, developing a systematic strategy to construct polychromatic photoluminescent supramolecular self-assemblies for improving the efficiency and sensitivity of artificial light-harvesting systems still remains a challenge. Here, a series of amphiphilicity-controlled supramolecular self-assemblies with polychromatic fluorescence based on lower-rim hexyl-modified sulfonatocalix[4]arene (SC4A6) and N-alkyl-modified p-phenylene divinylpyridiniums (PVPn, n = 2-7) as efficient light-harvesting platforms is reported.

View Article and Find Full Text PDF

An organic semiconductor with high carrier mobility and efficient light absorption over a wide spectral range is of the most important yet challenging material for constructing a broadband responsive organic photodetector. However, the development of such organic semiconductors, especially for air-stable n-type organic small molecule semiconductors, is still at an early stage. Here we report the fabrication of high-performance n-type semiconducting crystalline nanosheets and the development of air-stable field-effect transistors, phototransistors, with high response over a broad spectrum.

View Article and Find Full Text PDF

Dissipative self-assembly, one of fundamentally important out-of-equilibrium self-assembly systems, can serve as a controllable platform to exhibit temporal processes for various non-stimulus responsive properties. However, construction of light-fueled dissipative self-assembly structures with transformable morphology to modulate non-photoresponsive properties remains a great challenge. Here, we report a light-activated photodeformable dissipative self-assembly system in aqueous solution as metastable fluorescent palette.

View Article and Find Full Text PDF

Artificial supramolecular light-harvesting systems have expanded various properties on photoluminescence, enabling promising applications on cell imaging, especially for imaging in organelles. Supramolecular light-harvesting systems have been used for imaging in some organelles such as lysosome, Golgi apparatus, and mitochondrion, but developing a supramolecular light-harvesting platform for imaging two organelles synchronously still remains a great challenge. Here, we report a series of lower-rim dodecyl-modified sulfonato-calix[4]arene-mediated supramolecular light-harvesting platforms for efficient light-harvesting from three naphthalene diphenylvinylpyridiniums containing acceptors, Nile Red, and Nile Blue.

View Article and Find Full Text PDF

The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge.

View Article and Find Full Text PDF

Inspired by human vision, a diverse range of light-driven molecular switches and motors have been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications.

View Article and Find Full Text PDF

Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century.

View Article and Find Full Text PDF

In nature, many mysterious creatures capable of deformation camouflage, color camouflage, and self-healing have inspired scientists to develop various biomimetic soft robots. However, the systematic integration of all the above functionalities into a single soft actuator system still remains a challenge. Here we chemically introduce a multi-stimuli-responsive tetraarylsuccinonitrile (TASN) chromophore into a liquid crystal elastomer (LCE) network through a facile thiol-ene photoaddition method.

View Article and Find Full Text PDF

Sophisticated soft matter engineering has been endorsed as an emerging paradigm for developing untethered soft robots with built-in electronic functions and biomimetic adaptation capacities. However, the integration of flexible electronic components into soft robotic actuators is challenging due to strain mismatch and material incompatibilities. Herein, we report a general strategy to integrate electrically conductive liquid metals (LMs) and shape-morphing liquid crystal networks (LCNs) towards multifunctional and programmable soft robotics.

View Article and Find Full Text PDF

An oblique helicoidal cholesteric liquid crystal Ch_{OH} represents a unique optical material with a single-harmonic periodic modulation of the refractive index and a pitch that can be tuned by an electric or magnetic field in a broad range from submicrometers to micrometers. In this work, we demonstrate that the oblique helicoidal cholesteric doped with azoxybenzene molecules can be tuned by both the electric field and light irradiation. The tuning mechanism is explained by the kinetics of trans-cis photoisomerization of the azoxybenzene molecules.

View Article and Find Full Text PDF

With the advantage of reversible shape-morphing between two different permanent shapes under external stimuli, the two-way shape-memory aerogel is expected to become a preferred aerogel for developing practical applications in actuators, sensors, robotics, and more. Herein, the first two-way shape-memory liquid crystal elastomer (LCE)-based aerogel is prepared by an orthogonal heat and light curing strategy coupled with an intermediate mechanical stretching step. The differential scanning calorimetry, temperature-varied wide-angle X-ray scattering, and polarizing optical microscope results indicate that the aerogel possesses a liquid crystal phase and the insider mesogens are well-oriented along the stretching direction.

View Article and Find Full Text PDF

Two light-driven chiral fluorescent molecular switches, (R,S,R)-switch 1 and (R,S,R)-switch 2, are prepared by means of hydrogen-bonded (H-bonded) assembly of a photoresponsive (S) chiral fluorescent molecule, respectively with a cyano substitution at different positions as an H-bond acceptor and an opposite (R) chiral molecule as an H-bond donor. The resulting two switches exhibit tunable and reversible Z/E photoisomerization irradiated with 450 nm blue and 365 nm UV light. When doped into an achiral liquid crystal, both switches are found to be able to form a CPL tunable luminescent helical superstructure.

View Article and Find Full Text PDF

Metal-polymer composites (MPCs) with combined properties of metals and polymers have achieved much industrial success. However, metals in MPCs are thought to be ordinary and invariable electrically conductive fillers in supportive polymers to show limited use in modern technologies. This work that is disclosed here, for the first time, introduces stimuli-driven transition from biphasic to monophasic state of liquid metal into polymer science to form dynamic soft conductors from the binary metal-polymer composites.

View Article and Find Full Text PDF

Dissipative self-assembly, which requires a continuous supply of fuel to maintain the assembled states far from equilibrium, is the foundation of biological systems. Among a variety of fuels, light, the original fuel of natural dissipative self-assembly, is fundamentally important but remains a challenge to introduce into artificial dissipative self-assemblies. Here, we report an artificial dissipative self-assembly system that is constructed from light-induced amphiphiles.

View Article and Find Full Text PDF