Mutations in the genes encoding LRRK2 and α-synuclein cause autosomal dominant forms of familial Parkinson's disease (PD). Fibrillar forms of α-synuclein are a major component of Lewy bodies, the intracytoplasmic proteinaceous inclusions that are a pathological hallmark of idiopathic and certain familial forms of PD. LRRK2 mutations cause late-onset familial PD with a clinical, neurochemical and, for the most part, neuropathological phenotype that is indistinguishable from idiopathic PD.
View Article and Find Full Text PDFBackground: Leukoencephalopathy with brain stem and spinal cord involvement and brain lactate elevation (LBSL) was recently shown to be caused by mutations in the DARS2 gene, encoding a mitochondrial aspartyl-tRNA synthetase. So far, affected individuals were invariably compound heterozygous for two mutations in DARS2, and drug treatments have remained elusive.
Methods: Prospective 2-year follow-up of the natural history of the main presenting symptoms in a homozygous DARS2 mutation carrier, followed by a 60 day treatment with acetazolamide in two different doses and with two random treatment interruptions.
An isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency.
View Article and Find Full Text PDFBackground: Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial and sporadic Parkinson's disease. The multidomain protein LRRK2 exhibits overall low GTPase and kinase activity in vitro.
Methodology/principal Findings: Here, we show that the rho guanine nucleotide exchange factor ARHGEF7 and the small GTPase CDC42 are interacting with LRRK2 in vitro and in vivo.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known cause of Parkinson's disease (PD). Whether loss of LRRK2 function accounts for neurodegeneration of dopamine neurons in PD is not known, nor is it known whether LRRK2 kinase activity modulates the susceptibility of dopamine (DA) neurons to the selective dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To better understand the role of LRRK2 in DA neuronal survival and its role in the susceptibility of DA neurons to MPTP, we generated LRRK2 knock-out (KO) mice lacking the kinase domain of LRRK2.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies. Alpha-synuclein and its interactor synphilin-1 are major components of these inclusions. Rare mutations in the alpha-synuclein and synphilin-1 genes have been implicated in the pathogenesis of PD; however, the normal function of these proteins is far from being completely elucidated.
View Article and Find Full Text PDFThis review describes the present state of a project to identify and characterize novel nervous system proteins by using monoclonal antibodies (mAbs) against the Drosophila brain. Some 1,000 hybridoma clones were generated by injection of homogenized Drosophila brains or heads into mice and fusion of their spleen cells with myeloma cells. Testing the mAbs secreted by these clones identified a library of about 200 mAbs, which selectively stain specific structures of the Drosophila brain.
View Article and Find Full Text PDFBiochim Biophys Acta
July 2009
The frequency and potency of mutations in the LRRK2 gene redefine the role of genetic susceptibility in Parkinson's disease. Dominant missense mutations that fulfill initial criteria for potential gain of function mechanisms coupled with enzymatic activity likely amenable to small molecule inhibition position LRRK2 as a promising therapeutic target. Herein, key observations from the clinic to the test tube are highlighted together with points of contention and outstanding critical issues.
View Article and Find Full Text PDFGenetic findings have changed our views on Parkinson's disease (PD) and parkinsonism, which will be collectively referred to as Parkinsonian Syndrome (PS) in the present manuscript. Mutations in several genes are found to cause monogenic forms of the disorder. Point mutations, duplications and triplications in the alpha-synuclein gene cause a rare dominant form of PS in families.
View Article and Find Full Text PDFBackground: Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene account for a significant proportion of autosomal-dominant and some late-onset sporadic Parkinson's disease. Elucidation of LRRK2 protein function in health and disease provides an opportunity for deciphering molecular pathways important in neurodegeneration. In mammals, LRRK1 and LRRK2 protein comprise a unique family encoding a GTPase domain that controls intrinsic kinase activity.
View Article and Find Full Text PDFMutations in the LRRK2 gene cause autosomal dominant, late-onset parkinsonism, which presents with pleomorphic pathology including alpha-synucleopathy. To promote our understanding of the biological role of LRRK2 in the brain we examined the distribution of LRRK2 mRNA and protein in postmortem human brain tissue from normal and neuropathological subjects. In situ hybridization and immunohistochemical analysis demonstrate the expression and localization of LRRK2 to various neuronal populations in brain regions implicated in Parkinson's disease (PD) including the cerebral cortex, caudate-putamen and substantia nigra pars compacta.
View Article and Find Full Text PDFMutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease indistinguishable from idiopathic disease. The mechanisms whereby missense alterations in the LRRK2 gene initiate neurodegeneration remain unknown. Here, we demonstrate that seven of 10 suspected familial-linked mutations result in increased kinase activity.
View Article and Find Full Text PDFObjective: The PARK8 gene responsible for late-onset autosomal dominant Parkinson's disease encodes a large novel protein of unknown biological function termed leucine-rich repeat kinase 2 (LRRK2). The studies herein explore the localization of LRRK2 in the mammalian brain.
Methods: Polyclonal antibodies generated against the amino or carboxy termini of LRRK2 were used to examine the biochemical, subcellular, and immunohistochemical distribution of LRRK2.
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) have been identified as the cause of familial Parkinson's disease (PD) at the PARK8 locus. To begin to understand the physiological role of LRRK2 and its involvement in PD, we have investigated the distribution of LRRK2 mRNA and protein in the adult mouse brain. In situ hybridization studies indicate sites of mRNA expression throughout the mouse brain, with highest levels of expression detected in forebrain regions, including the cerebral cortex and striatum, intermediate levels observed in the hippocampus and cerebellum, and low levels in the thalamus, hypothalamus and substantia nigra.
View Article and Find Full Text PDFAs individuals enter their 80s, they are inevitably confronted with the problem of neuronal loss in the brain. The incidence of the common movement disorder 'mild parkinsonian signs' (MPS) is approximately 50% over the age of 85 years. It has long been known that the loss of dopaminergic neurons in the substantia nigra pars compacta is a neuropathological hallmark of Parkinson's disease (PD).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2005
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease (PD) with a clinical appearance indistinguishable from idiopathic PD. Initial studies suggest that LRRK2 mutations are the most common yet identified determinant of PD susceptibility, transmitted in an autosomal-dominant mode of inheritance. Herein, we characterize the LRRK2 gene and transcript in human brain and subclone the predominant ORF.
View Article and Find Full Text PDFMultiple mutations in the gene for the leucine-rich repeat kinase (LRRK2) cause autosomal dominant late-onset parkinsonism (PARK8). The Gly2019Ser mutation appears to be common in different populations. To investigate whether this novel gene influences the non-Mendelian sporadic form of Parkinson's disease, we genotyped 121 single nucleotide polymorphisms comprehensively covering the entire LRRK2 gene region in a set of 340 Parkinson's disease patients and 680 matched control subjects from Germany.
View Article and Find Full Text PDFBackground: Familial hemiplegic migraine is an autosomal dominant severe subtype of migraine with aura characterised by some degree of hemiparesis during the attacks. So far, mutations in two genes regulating ion translocation-CACNA1A and ATP1A2-have been identified in pedigrees with this disease.
Methods: To identify additional genes for familial hemiplegic migraine, we did a genome-wide linkage analysis of two disease pedigrees without mutations in CACNA1A and ATP1A2.
The pattern of linkage disequilibrium (LD) is critical for association studies, in which disease-causing variants are identified by allelic association with adjacent markers. The aim of this study is to compare the LD patterns in several distinct European populations. We analyzed four genomic regions (in total, 749 kb) containing candidate genes for complex traits.
View Article and Find Full Text PDFWe have previously linked families with autosomal-dominant, late-onset parkinsonism to chromosome 12p11.2-q13.1 (PARK8).
View Article and Find Full Text PDF