Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE) in the inner leaflet.
View Article and Find Full Text PDFThe structural complexity of the cell envelope of Gram-negative bacteria limits the fabrication of realistic models of bacterial cell membranes. A vertical Langmuir-Blodgett withdrawing was used to deposit a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) monolayer on the Au(111) surface. The second leaflet composed of di[3-deoxy-D-manno-octulosonyl]-lipid A (KLA) was deposited using Langmuir-Schaefer transfer.
View Article and Find Full Text PDFThe cell membrane of Gram-negative bacteria interacting with an antimicrobial peptide presents a complex supramolecular assembly. Fabrication of models of bacterial cell membranes remains a large experimental challenge. Langmuir-Blodgett and Langmuir-Schaefer (LS-LB) transfer makes possible the deposition of multicomponent asymmetric lipid bilayers onto a gold surface.
View Article and Find Full Text PDF