The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of international experts to discuss new research opportunities for the prevention, detection, and intervention of myocarditis in May 2021. These experts reviewed the current state of science and identified key gaps and opportunities in basic, diagnostic, translational, and therapeutic frontiers to guide future research in myocarditis. In addition to addressing community-acquired myocarditis, the workshop also focused on emerging causes of myocarditis including immune checkpoint inhibitors and SARS-CoV-2 related myocardial injuries and considered the use of systems biology and artificial intelligence methodologies to define workflows to identify novel mechanisms of disease and new therapeutic targets.
View Article and Find Full Text PDFAdvances in cancer treatments have led to nearly 17 million survivors in the US today. Cardiovascular complications attributed to cancer treatments are the leading cause of morbidity and mortality in cancer survivors. In response, NCI and NHLBI held 2 workshops and issued funding opportunities to strengthen research on cardiotoxicity.
View Article and Find Full Text PDFJ Nepal Health Res Counc
December 2021
Background: There are very few researches from Nepal that have evaluated clinical profile of end stage renal disease patients. Our main objective was to study the clinical profile of end stage renal disease patients, who were under maintenance hemodialysis for at least three months duration in two dialysis centers located in Chitwan Nepal.
Methods: This was a descriptive, cross-sectional study conducted among 138 end stage renal disease patients, who were undergoing maintenance hemodialysis at two government centers located in Chitwan, Nepal.
Although cardiovascular toxicity from traditional chemotherapies has been well recognized for decades, the recent explosion of effective novel targeted cancer therapies with cardiovascular sequelae has driven the emergence of cardio-oncology as a new clinical and research field. Cardiovascular toxicity associated with cancer therapy can manifest as a broad range of potentially life-threatening complications, including heart failure, arrhythmia, myocarditis, and vascular events. Beyond toxicology, the intersection of cancer and heart disease has blossomed to include discovery of genetic and environmental risk factors that predispose to both.
View Article and Find Full Text PDFCardiovascular (CV) toxicity from cancer therapy is a significant and growing concern. Conventional oncology clinical trial designs focused singularly on cancer treatment efficacy have not provided sufficient information on both CV risk factors and outcomes. Similarly, traditional CV trials evaluating standard interventions typically exclude cancer patients, particularly those actively receiving cancer therapy.
View Article and Find Full Text PDFHeart failure with preserved ejection fraction (HFpEF), a major public health problem that is rising in prevalence, is associated with high morbidity and mortality and is considered to be the greatest unmet need in cardiovascular medicine today because of a general lack of effective treatments. To address this challenging syndrome, the National Heart, Lung, and Blood Institute convened a working group made up of experts in HFpEF and novel research methodologies to discuss research gaps and to prioritize research directions over the next decade. Here, we summarize the discussion of the working group, followed by key recommendations for future research priorities.
View Article and Find Full Text PDFPurpose Of Review: Cardiovascular effects from cancer treatment remains a leading cause of treatment-associated morbidity and mortality among cancer survivors. The National Cancer Institute and National Heart, Lung, and Blood Institute convened a Workshop in June 2018 entitled "Changing Hearts and Minds: Improving Outcomes in Cancer Treatment-Related Cardiotoxicity" to highlight progress, ongoing work, and update scientific priorities since the 2013 Workshop. Here we will describe these advances and provide an overview of the research priorities identified.
View Article and Find Full Text PDFThe commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient's health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient's health condition in near real time.
View Article and Find Full Text PDFPoint-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems.
View Article and Find Full Text PDFCardiotoxicity resulting from direct myocyte damage has been a known complication of cancer treatment for decades. More recently, the emergence of hypertension as a clinically significant side effect of several new agents has been recognized as adversely affecting cancer treatment outcomes. With cancer patients living longer, in part because of treatment advances, these adverse events have become increasingly important to address.
View Article and Find Full Text PDFWe examined the influence of cross-bridge cycling kinetics on the length dependence of steady-state force and the rate of force redevelopment (k(tr)) during Ca(2+)-activation at sarcomere lengths (SL) of 2.0 and 2.3 microm in skinned rat cardiac trabeculae.
View Article and Find Full Text PDFLow angle x-ray diffraction measurements of myofilament lattice spacing (D(1,0)) and equatorial reflection intensity ratio (I(1,1)/I(1,0)) were made in relaxed skinned cardiac trabeculae from rats. We tested the hypothesis that the degree of weak cross-bridge (Xbr) binding, which has been shown to be obligatory for force generation in skeletal muscle, is modulated by changes in lattice spacing in skinned cardiac muscle. Altered weak Xbr binding was detected both by changes in I(1,1)/I(1,0) and by measurements of chord stiffness (chord K).
View Article and Find Full Text PDFTo investigate the interplay between the thin and thick filaments during calcium activation in striated muscle, we employed n-(6-aminohexyl) 5-chloro-1-napthalenesulfonamide (W7) as an inhibitor of troponin C and compared its effects with that of the myosin-specific inhibitor, 2,3-butanedione 2-monoxime (BDM). In both skeletal and cardiac fibers, W7 reversibly inhibited ATPase and tension over the full range of calcium activation between pCa 8.0 and 4.
View Article and Find Full Text PDFType I male midshipman fish produce high-frequency hums for prolonged durations using sonic muscle fibers, each of which contains a hollow tube of radially oriented thin and flat myofibrils that display extraordinarily wide ( approximately 1.2 microm) Z bands. We have revealed an elaborate cytoskeletal network of desmin filaments associated with the contractile cylinder that form interconnected concentric ring structures in the core and periphery at the level of the Z bands.
View Article and Find Full Text PDF