It is hypothesized that the genome-wide genic markers may increase the prediction accuracy of genomic selection for quantitative traits. To test this hypothesis, a set of candidate gene-based markers for yield and grain traits-related genes cloned across the rice genome were custom-designed. A multi-model, multi-locus genome-wide association study (GWAS) was performed using new genic markers developed to test their effectiveness for gene discovery.
View Article and Find Full Text PDFAbiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses.
View Article and Find Full Text PDFBackground: The nutritional value of rice can be improved by developing varieties with optimum levels of grain phytic acid (PA). Artificial low-PA mutants with impaired PA biosynthesis have been developed in rice through induced mutagenesis. However, low-PA mutant stocks with drastically reduced grain PA content have poor breeding potential, and their use in rice breeding is restricted due to their detrimental pleiotropic effects, which include decreased seed viability, low grain weight, and low seed yield.
View Article and Find Full Text PDFUnlabelled: Assessing genetic diversity and development of a core set of elite breeding lines is a prerequisite for selective hybridization programes intended to improve the yield potential in rice. In the present study, the genetic diversity of newly developed elite lines derived from and crosses were estimated by 38 reported molecular markers. The markers used in the study consist of 24 gene-based and 14 random markers related to grain yield-related QTLs distributed across the rice genome.
View Article and Find Full Text PDFLack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identification of robust QTLs for grain protein content (GPC) in rice. In the present investigation a BCF mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identified QTLs, one for GPC (qGPC1.
View Article and Find Full Text PDFThe present study reports an unequivocal and improved protocol for efficient screening of salt tolerance at flowering stage in rice, which can aid phenotyping of population for subsequent identification of QTLs associated with salinity stress, particularly at reproductive stage. To validate the new method, the selection criteria, level and time of imposition of stress; plant growth medium were standardized using three rice genotypes. The setup was established with a piezometer placed in a perforated pot for continuous monitoring of soil EC and pH throughout the period of study.
View Article and Find Full Text PDFThe inter relationships between the two progenitors is interesting as both wild relatives are known to be the great untapped gene reservoirs. The debate continues on granting a separate species status to Oryza nivara. The present study was conducted on populations of Oryza rufipogon and Oryza nivara from Eastern India employing morphological and molecular characteristics.
View Article and Find Full Text PDF