Publications by authors named "Bishakh Rout"

In this work, silver nanoparticles (Ag NPs) were decorated on thiol (-SH) grafted graphene oxide (GO) layers to investigate the antibacterial activities in Gram-positive bacteria () and Gram-negative bacteria (). The quasi-spherical, nano-sized Ag NPs were attached to the GO surface layers, as confirmed by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), respectively. The average size of GO-Ag nanocomposites was significantly reduced (327 nm) from those of pristine GO (962 nm) while the average size of loaded Ag NPs was significantly smaller than the Ag NPs without GO.

View Article and Find Full Text PDF

Background: Photodynamic therapy has been studied as a method for inactivating bacterial growth. Workers have used planktonic bacterial as well as biofilm bacterial cultures to evaluate the potential of photodynamic therapy in inactivating bacteria. However, almost all the studies use a photosensitiser in aqueous solution, which could be detrimental to the efficiency of photodynamic therapy.

View Article and Find Full Text PDF

Photosensitization-based antimicrobial therapy (PAT) is an alternative therapy aimed at achieving bacterial inactivation. Researchers use various photosensitizers to achieve bacterial inactivation. However, the most widely used approach involves the use of photosensitizers dispersed in aqueous solution, which could limit the effectiveness of photodynamic inactivation.

View Article and Find Full Text PDF

As pathogens steadily develop resistance to widely used antibiotics, new methodologies for their efficient inactivation must be developed. Photodynamic therapy is an upcoming technique that provides an alternative option for treating pathogenic infections. The efficiency of photodynamic therapy has been limited by the use of aqueous mediums for dispersing photosensitising agents.

View Article and Find Full Text PDF