Targeting the biosynthetic pathway of mycolic acid is highly attractive to researchers in the field of novel anti-tubercular drug development. Pks13-TE is an essential catalytic component in the last assembling step of mycolic acid, and the co-crystal structures of the Pks13-TE-inhibitor complex provide insight into ligand recognition. Based on a structure-guided strategy, N-aryl indole derivatives were designed, synthesized, and evaluated for their antitubercular activities.
View Article and Find Full Text PDFThe first total synthesis of the heptapeptide Cyclomarin A (CymA) was achieved via new routes to chiral amino acid building blocks (highlighted) and solid-phase peptide synthesis. A structurally misassigned epimer of CymA (CymA'), Cyclomarin C, and Metamarin were also synthesized. Affirmation of the syntheses was corroborated by observations that the synthetic molecules have antimicrobial activities mirroring those of the natural products.
View Article and Find Full Text PDFPost-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023.
View Article and Find Full Text PDFMechanisms by which (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails.
View Article and Find Full Text PDFA quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop pulmonary TB. We developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: the development of necrotic lung granulomas and determined that the sst1-susceptible phenotype was driven by the aberrant macrophage activation. This study demonstrates that the aberrant response of the sst1-susceptible macrophages to prolonged stimulation with TNF is primarily driven by conflicting Myc and antioxidant response pathways leading to a coordinated failure 1) to properly sequester intracellular iron and 2) to activate ferroptosis inhibitor enzymes.
View Article and Find Full Text PDFDespite the introduction of several new agents for the treatment of bladder cancer (BC), intravesical BCG remains a first line agent for the management of non-muscle invasive bladder cancer. In this study we evaluated the antitumor efficacy in animal models of BC of a recombinant BCG known as BCG--OE that releases the small molecule STING agonist c-di-AMP. We found that compared to wild-type BCG (BCG-WT), in both the orthotopic, carcinogen-induced rat MNU model and the heterotopic syngeneic mouse MB-49 model BCG--OE afforded improved antitumor efficacy.
View Article and Find Full Text PDFIn this paper, we describe novel inhibitors of cyclic dinucleotide phosphodiesterase enzymes from () (CdnP) and mammals (ENPP1). The phosphodiesterase enzymes hydrolyze cyclic dinucleotides, such as 2',3'-cyclic GMP-AMP and c-di-AMP, which are stimulator of interferon gene (STING) agonists. By blocking the hydrolysis of STING agonists, the cyclic GMP-AMP synthase (cGAS)-STING-IRF3 pathway is potentiated.
View Article and Find Full Text PDFAs one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo.
View Article and Find Full Text PDFHost cytosolic sensing of Mycobacterium tuberculosis (M. tuberculosis) RNA by the RIG-I-like receptor (RLR) family perturbs innate immune control within macrophages; however, a distinct role of MDA5, a member of the RLR family, in M. tuberculosis pathogenesis has yet to be fully elucidated.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
September 2023
Tuberculosis remains a daunting public health concern in many countries of the world. A consistent observation in the global epidemiology of tuberculosis is an excess of cases of active pulmonary tuberculosis among males compared with females. Data from both humans and animals also suggest that males are more susceptible than females to develop active pulmonary disease.
View Article and Find Full Text PDFBacillus Calmette-Guérin (BCG) confers heterologous immune protection against viral infections and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here, we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model. BCG vaccination conferred a modest reduction on lung SCV2 viral load, bronchopneumonia scores, and weight loss, accompanied by a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes.
View Article and Find Full Text PDFJ Clin Tuberc Other Mycobact Dis
December 2023
Background: Contribution of host factors in mediating susceptibility to extrapulmonary tuberculosis is not well understood.
Objective: To examine the influence of patient sex on anatomical localization of extrapulmonary tuberculosis.
Methods: We conducted a retrospective cross-sectional study in Mali, West Africa.
Mechanisms by which (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan sidechains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails.
View Article and Find Full Text PDFMycobacterial membrane protein Large 3 (MmpL3), an inner membrane protein, plays a crucial role in the transport of mycolic acids that are essential for the viability of M. tuberculosis and has been a promising therapeutic target for new anti-TB agents. Herein, we report the discovery of pyridine-2-methylamine antitubercular compounds using a structure-based drug design strategy.
View Article and Find Full Text PDFAs one of the most successful human pathogens, () has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a novel glutamine metabolism antagonist, JHU083, inhibits proliferation in vitro and in vivo.
View Article and Find Full Text PDFDespite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics.
View Article and Find Full Text PDFPks13 was identified as a key enzyme involved in the final step of mycolic acid biosynthesis. We previously identified antitubercular coumestans that targeted Pks13-TE, and these compounds exhibited high potency both in vitro and in vivo. However, lead compound presented potential safety concerns because it inhibits the hERG potassium channel in electrophysiology patch-clamp assays (IC = 0.
View Article and Find Full Text PDFMen and women often respond differently to infectious diseases and their treatments. Tuberculosis (TB) is a life-threatening communicable disease that affects more men than women globally. Whether male sex is an independent risk factor for unfavorable TB outcomes, however, has not been rigorously investigated in an African context, where individuals are likely exposed to different microbial and environmental factors.
View Article and Find Full Text PDFTuberculosis (TB), the world's deadliest bacterial infection, afflicts more human males than females, with a male/female (M/F) ratio of 1.7. Sex disparities in TB prevalence, pathophysiology, and clinical manifestations are widely reported, but the underlying biological mechanisms remain largely undefined.
View Article and Find Full Text PDF