Publications by authors named "Biryukov M"

In our large-scale search for antimicrobial-producing bacteria, we isolated an actinomycete strain from rhizospheric soil of . The strain designated BP-8 showed noticeable antibacterial activity. BP-8 was subjected to a whole-genome analysis via a polyphasic taxonomy approach, and its antibacterial metabolite was identified by HRLS-MS.

View Article and Find Full Text PDF

Antibiotic resistance has been and remains a major problem in our society. The main solution to this problem is to search and study the mechanisms of antibiotic action. Many groups of secondary metabolites, including antimicrobial ones, are produced by the phylum.

View Article and Find Full Text PDF

The effect of a natural polysaccharide (hyaluronic acid (HA)) on the photocatalytic activity of methylene blue (MB) was studied both under model conditions (a tryptophan photooxidation reaction in water) and with in vitro experiments on and bacterial cultures. It was shown spectrophotometrically that, in the presence of HA, an increase in the optical density of the absorption bands λ = 665 nm and 620 nm-which correspond to the monomeric and dimeric forms of the dye, respectively-was observed in the EAS of the dye, while the ratio of the optical density of these bands remained practically unchanged. When adding HA to MB, the intensity of singlet oxygen O photoluminescence and the degree of fluorescence polarization of MB increase.

View Article and Find Full Text PDF

In the search for new antibiotics, it is a common occurrence that already known molecules are "rediscovered" while new promising ones remain unnoticed. A possible solution to this problem may be the so-called "target-oriented" search, using special reporter microorganisms that combine increased antibiotic sensitivity with the ability to identify a molecule's damaging effect. The use of such test organisms makes it possible to discover new promising properties even in known metabolites.

View Article and Find Full Text PDF

Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials.

View Article and Find Full Text PDF

The interaction of cold atmospheric plasma (CAP) with biotargets is accompanied by chemical reactions on their surfaces and insides, and it has great potential as an anticancer approach. This study discovers the molecular mechanisms that may explain the selective death of tumor cells under CAP exposure. To reach this goal, the transcriptional response to CAP treatment was analyzed in A549 lung adenocarcinoma cells and in lung-fibroblast Wi-38 cells.

View Article and Find Full Text PDF

Representatives of the phylum are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described.

View Article and Find Full Text PDF

Retroviruses originated from long terminal repeat retrotransposons (LTR-RTs) through several structural adaptations. One such modification was the arrangement of an additional ribonuclease H (aRH) domain next to native RH, followed by degradation and subfunctionalization of the latter. We previously showed that this retrovirus-like structure independently evolved in Tat LTR-RTs in flowering plants, proposing its origin from sequential rearrangements of ancestral Tat structures identified in lycophytes and conifers.

View Article and Find Full Text PDF

Potential to produce inducible enzymes (several hydrolases and oxidases) and antibiotics as secondary metabolites was studied in soil micromycete strains from the Arctic (Franz Josef Land and Novaya Zemlya) and Antarctica (the oases Thala Hills, Larsemann Hills, Schirmacher, and Marie Byrd Land). Maximal esterase activity was observed in strains of two typical Antarctic species, Hyphozyma variabilis 218 and Thelebolus ellipsoideus 210 (51 and 29 nmol FDA/((g mycelium h), respectively). Cellulolytic activity was maximal (89 µmol glucose/mg biomass) in Ascochyta pisi 192.

View Article and Find Full Text PDF
Article Synopsis
  • Cold atmospheric plasma (CAP) shows potential in treating cancer by selectively targeting malignant cells while sparing healthy cells, though the exact mechanisms of interaction are not fully understood.
  • In experiments with lung cancer cell lines, CAP treatment significantly reduced cancer cell viability while only slightly affecting healthy lung cells, suggesting a semi-selective approach to treatment.
  • The study found that combining CAP with the autophagy inhibitor chloroquine (CQ) enhanced cancer cell death by disrupting mitochondrial function and autophagy processes, indicating a promising direction for future cancer therapies.
View Article and Find Full Text PDF

Symsagittifera roscoffensis is a well-known member of the order Acoela that lives in symbiosis with the algae Tetraselmis convolutae during its adult stage. Its natural habitat is the eastern coast of the Atlantic, where at specific locations thousands of individuals can be found, mostly, lying in large pools on the surface of sand at low tide. As a member of the Acoela it has been thought as a proxy for ancestral bilaterian animals; however, its phylogenetic position remains still debated.

View Article and Find Full Text PDF

In a free-living flatworm, , an S-phase kinase-associated protein 1 () homologous gene was identified as enriched in proliferating cells, suggesting that it can function in the regulation of stem cells or germline cells since these are the only two types of proliferating cells in flatworms. is a conserved protein that plays a role in ubiquitination processes as a part of the Skp1-Cullin 1-F-box (SCF) ubiquitin ligase complex. However, the exact role of in was not established.

View Article and Find Full Text PDF

Transgenesis is an important and often irreplaceable method to study numerous processes of animal life. To create animal transgenic lines, it is necessary to have a suitable model organism that has necessary traits for efficient and affordable transgenesis. The concise review characterizes the existing model organisms of different taxa for which an efficient transgenesis protocol has been developed.

View Article and Find Full Text PDF

There are several well-studied examples of protective symbiosis between insect host and symbiotic actinobacteria, producing antimicrobial metabolites to inhibit host pathogens. These mutualistic relationships are best described for some wasps and leaf-cutting ants, while a huge variety of insect species still remain poorly explored. For the first time, we isolated actinobacteria from the harvester ant and evaluated the isolates' potential as antimicrobial producers.

View Article and Find Full Text PDF

The aromatic polyketides tetracenomycins were recently found to be potent inhibitors of protein synthesis. Their binding site is located in a unique locus within the tunnel of the large ribosomal subunit. Here we report the isolation and structure elucidation of a novel natural tetracenomycin congener - O-Me-tetracenomycin C (O-Me-TcmC).

View Article and Find Full Text PDF

Since the discovery of streptomycin, actinomycetes have been a useful source for new antibiotics, but there have been diminishing rates of new finds since the 1960s. The decreasing probability of identifying new active agents led to reduced interest in soil bacteria as a source for new antibiotics. At the same time, actinomycetes remain a promising reservoir for new active molecules.

View Article and Find Full Text PDF

An actinobacterial strain A23, isolated from adult ant Camponotus vagus collected in Ryazan region (Russia) and established as tetracenomycin X producer, was subjected to a polyphasic taxonomic study. Morphological characteristics of this strain included well-branched substrate mycelium and aerial hyphae fragmented into rod-shaped elements. Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that strain A23 was most closely related to Amycolatopsis pretoriensis DSM 44654.

View Article and Find Full Text PDF

Retrotransposons comprise a substantial fraction of eukaryotic genomes, reaching the highest proportions in plants. Therefore, identification and annotation of retrotransposons is an important task in studying the regulation and evolution of plant genomes. The majority of computational tools for mining transposable elements (TEs) are designed for subsequent genome repeat masking, often leaving aside the element lineage classification and its protein domain composition.

View Article and Find Full Text PDF

The aromatic polyketide tetracenomycin X (TcmX) was recently found to be a potent inhibitor of protein synthesis; its binding site is located in a unique locus within the tunnel of the large ribosomal subunit. The distinct mode of action makes this relatively narrow class of aromatic polyketides promising for drug development in the quest to prevent the spread of drug-resistant pathogens. Here we report the isolation and structure elucidation of a novel natural tetracenomycin X congener - 6-hydroxytetraceonomycin X (6-OH-TcmX).

View Article and Find Full Text PDF

We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated.

View Article and Find Full Text PDF

Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery.

View Article and Find Full Text PDF

Nonribosomal cyclopeptide cyclosporin A (CsA), produced by fungus Tolypocladium inflatum, is an extremely important immunosuppressive drug used in organ transplantations and for therapy of autoimmune diseases. Here we report for the first time production of CsA, along with related cyclosporins B and C, by Tolypocladium inflatum strains of marine origin (White Sea). Cyclosporins A-C contain an unusual amino acid, (4R)-4-((E)-2-butenyl)-4,N-dimethyl-l-threonine (MeBmt), and are prone to isomerization to non-active isocyclosporin by N→O acyl shift of valine connected to MeBmt in acidic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Previous studies focused on farming ants and their use of antifungal microbes, but this research investigates the symbiosis between carpenter ants and actinobacteria.
  • * Antimycin A complex, produced by the isolated actinobacteria strain A10, was found to have significant antimicrobial and cytotoxic properties.
  • * The study suggests that strain A10 may help protect carpenter ants from infections, although the exact nature of this relationship needs further exploration.*
View Article and Find Full Text PDF