A new method involving ligand displacement, headspace single-drop microextraction (SDME) with in-drop derivatization and capillary electrophoresis (CE) was developed for the determination of weak acid dissociable (WAD) cyanide. WAD metal-cyanide complexes (Ag(CN)(2)(-), Cd(CN)(4)(2-), Cu(CN)(3)(2-), Hg(CN)(2), Hg(CN)(4)(2-), Ni(CN)(4)(2-) and Zn(CN)(4)(2-)) are decomposed with ligand-displacing reagent and the released hydrogen cyanide is extracted from neutral solution (pH 6.5) with an aqueous microdrop (5 microl) containing Ni(II)-NH(3) as derivatization agent.
View Article and Find Full Text PDFA new method involving headspace single-drop microextraction (SDME) with in-drop derivatization and CE is developed for the preconcentration and determination of free cyanide. An aqueous microdrop (5 microL) containing Ni(II)-NH(3) (as derivatization agent), sodium carbonate and ammonium pyromellitate (as internal standard) was used as the acceptor phase. The extracted cyanide forms a stable Ni(CN)(4) (2-) complex which is then determined by CE.
View Article and Find Full Text PDFManipulation of the EOF is essential for achieving optimal separations by MEKC. In this paper, we present an extensive investigation of the effect of common experimental conditions on the EOF observed in a capillary coated with poly(diallyldimethylammonium chloride) (PDADMA) polyelectrolyte under MEKC conditions. It was found that highly reproducible cathodal EOF is achieved approximately at or just below the conditional CMC value of SDS in the electrolytes used.
View Article and Find Full Text PDFThe performance of capillaries coated with a poly(diallyldimethylammonium) (PDADMA) monolayer or poly(diallyldimethylammonium)-poly(styrenesulfonate) bilayer was investigated and compared under micellar electrokinetic chromatographic (MEKC) conditions. Both monolayer (positively charged) and bilayer (negatively charged) coatings with micellar (sodium dodecyl sulfate) electrolyte generated very stable and pH-independent cathodal electroosmotic flow (EOF). From the results obtained, it can be concluded that in a doubly coated capillary the second poly(styrenesulfonate) layer is replaced by sodium dodecyl sulfate micelles during flushing with micellar electrolyte.
View Article and Find Full Text PDF