We present a genome assembly from an individual (the Atlantic mackerel; Chordata; Actinopteri; Scombriformes; Scombridae). The genome sequence has a total length of 764.10 megabases.
View Article and Find Full Text PDFHeterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas.
View Article and Find Full Text PDFSeasonal variations in day length and temperature, in combination with dynamic factors such as advection from the North Atlantic, influence primary production and the microbial loop in the Fram Strait. Here, we investigated the seasonal variability of biopolymers, microbial abundance and microbial composition within the upper 100 m during summer and fall. Flow cytometry revealed a shift in the autotrophic community from picoeukaryotes dominating in summer to a 34-fold increase of Synechococcus by fall.
View Article and Find Full Text PDFOne pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray fluxes remains poorly characterized. Here we show a consistent significant relationship between seawater nanophytoplankton cell abundances and sea-spray derived Cloud Condensation Nuclei (CCN) number fluxes, generated using water from three different oceanic regions.
View Article and Find Full Text PDFAnalyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark).
View Article and Find Full Text PDFFront Microbiol
November 2018
The sea surface microlayer (SML) is located at the air-sea interface, with microorganisms and organic matter in the SML influencing air-sea exchange processes. Yet understanding of the SML bacterial (bacterioneuston) community composition and assembly remains limited. Availability of organic matter, UV radiation and wind speed have previously been suggested to influence the community composition of bacterioneuston.
View Article and Find Full Text PDFThe sea surface microlayer (SML) is the thin boundary layer between the ocean and the atmosphere, making it important for air-sea exchange processes. However, little is known about what controls organic matter composition in the SML. In particular, there are only few studies available on the differences of the SML of various oceanic systems.
View Article and Find Full Text PDF