Publications by authors named "Birnir B"

Background: γ-aminobutyric acid (GABA), known as the main inhibitory neurotransmitter in the brain, exerts immunomodulatory functions by interaction with immune cells, including T cells. Metabolic programs of T cells are closely linked to their effector functions including proliferation, differentiation, and cytokine production. The physiological molecules glucose and insulin may provide environmental cues and guidance, but whether they coordinate to regulate GABA-mediated T cell immunomodulation is still being examined.

View Article and Find Full Text PDF

We have developed compounds with a promising activity against and , which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor , we identified compound , featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from and , a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of in complex with GyrB24 and ()- in complex with GyrB23 and GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit.

View Article and Find Full Text PDF

Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor . Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system (CNS) and outside of the CNS, found in the highest concentrations in immune cells and pancreatic beta-cells. GABA is gaining increasing interest in diabetes research due to its immune-modulatory and beta-cell stimulatory effects and is a highly interesting drug candidate for the treatment of type 1 diabetes (T1D). GABA is synthesized from glutamate by glutamic acid decarboxylase (GAD), one of the targets for autoantibodies linked to T1D.

View Article and Find Full Text PDF

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures.

View Article and Find Full Text PDF

Aim: We examined if tonic γ-aminobutyric acid (GABA)-activated currents in primary hippocampal neurons were modulated by insulin in wild-type and tg-APPSwe mice, an Alzheimer's disease (AD) model.

Methods: GABA-activated currents were recorded in dentate gyrus (DG) granule cells and CA3 pyramidal neurons in hippocampal brain slices, from 8 to 10 weeks old (young) wild-type mice and in dorsal DG granule cells in adult, 5-6 and 10-12 (aged) months old wild-type and tg-APPSwe mice, in the absence or presence of insulin, by whole-cell patch-clamp electrophysiology.

Results: In young mice, insulin (1 nmol/L) enhanced the total spontaneous inhibitory postsynaptic current (sIPSC ) density in both dorsal and ventral DG granule cells.

View Article and Find Full Text PDF

The hippocampus is a medial temporal lobe structure in the brain and is widely studied for its role in memory and learning, in particular, spacial memory and emotional responses. It was thought to be a homogenous structure but emerging evidence shows differentiation along the dorsoventral axis and even microdomains for functional and cellular markers. We have examined in two cell-types of the hippocampal projection neurons, the dentate gyrus (DG) granule cells and CA3 pyramidal neurons, if the GABA-activated tonic current density varied between the dorsal (septal) and the ventral (temporal) poles of the male mouse hippocampus.

View Article and Find Full Text PDF

In pancreatic islets, the major cell-types are α, β and δ cells. The γ-aminobutyric acid (GABA) signalling system is expressed in human pancreatic islets. In single hormone transcript-expressing cells, we have previously characterized the functional properties of islet GABA receptors (iGABARs).

View Article and Find Full Text PDF

We compare the stochastic closure theory (SCT) to the Townsend-Perry constants as estimated from measurements in the Flow Physic Facility (FPF) at the University of New Hampshire. First, we explain the derivation of the Townsend-Perry constants, which were originally formulated by Meneveau and Marusic, in analogy with a Gaussian distribution. However, this was not supported by the data.

View Article and Find Full Text PDF

Immunomodulation is increasingly being recognised as a part of mental diseases. Here, we examined whether levels of immunological protein markers changed with depression, age, or the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). An analysis of plasma samples from patients with a major depressive episode and control blood donors (CBD) revealed the expression of 67 inflammatory markers.

View Article and Find Full Text PDF

The etiology of hereditary ataxia syndromes is heterogeneous, and the mechanisms underlying these disorders are often unknown. Here, we utilized exome sequencing in two siblings with progressive ataxia and muscular weakness and identified a novel homozygous splice mutation (c.3020-1G > A) in neurofascin ().

View Article and Find Full Text PDF

The neural transmission and plasticity can be differentially modulated by various elements of the immune system. Interferon-γ (IFN-γ) is a "pro-inflammatory" cytokine mainly produced by T lymphocytes, activates its corresponding receptor and plays important roles under both homeostatic and inflammatory conditions. However, the impact of IFN-γ on the γ-aminobutyric acid (GABA)-mediated currents in the hippocampus, a major brain region involved in the cognitive function, has not been investigated.

View Article and Find Full Text PDF

Dravet syndrome (DS) is an early onset refractory epilepsy typically caused by de novo heterozygous variants in SCN1A encoding the α-subunit of the neuronal sodium channel Na1.1. The syndrome is characterized by age-related progression of seizures, cognitive decline and movement disorders.

View Article and Find Full Text PDF

Assessing and managing risks of anthropogenic activities to ecological systems is necessary to ensure sustained delivery of ecosystem services for future generations. Ecological models provide a means of quantitatively linking measured risk assessment endpoints with protection goals, by integrating potential chemical effects with species life history, ecological interactions, environmental drivers and other potential stressors. Here we demonstrate how an ecosystem modeling approach can be used to quantify insecticide-induced impacts on ecosystem services provided by a lake from toxicity data for organism-level endpoints.

View Article and Find Full Text PDF

Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.

View Article and Find Full Text PDF

We demonstrate how mechanistic modeling can be used to predict whether and how biological responses to chemicals at (sub)organismal levels in model species (i.e., what we typically measure) translate into impacts on ecosystem service delivery (i.

View Article and Find Full Text PDF

The neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule in the brain and in pancreatic islets. Here, we demonstrate that GABA regulates cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and CD4 T cells. In anti-CD3 stimulated PBMCs, GABA (100nM) inhibited release of 47 cytokines in cells from patients with type 1 diabetes (T1D), but only 16 cytokines in cells from nondiabetic (ND) individuals.

View Article and Find Full Text PDF

In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule synthesized by and released from the insulin-secreting β cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABA receptors in human islet β cells as biological sensors and reveal that 100-1000nM GABA elicit the maximal opening frequency of the single-channels.

View Article and Find Full Text PDF

We explore the design parameter space of short (5-25 period), n-doped, Ga/(Al,Ga)As semiconductor superlattices (SSLs) in the sequential resonant tunneling regime. We consider SSLs at cool (77 K) and warm (295 K) temperatures, simulating the electronic response to variations in (a) the number of SSL periods, (b) the contact conductivity, and (c) the strength of disorder (aperiodicities). Our analysis shows that the chaotic dynamical phases exist on a number of sub-manifolds of codimension zero within the design parameter space.

View Article and Find Full Text PDF

Insulin, a pancreatic hormone, can access the central nervous system, activate insulin receptors distributed in selective brain regions and affect various cellular functions such as neurotransmission. We have previously shown that physiologically relevant concentration of insulin potentiates the GABA receptor-mediated tonic inhibition and reduces excitability of rat hippocampal CA1 neurons. The central nucleus of the amygdala (CeA) comprises heterogeneous neuronal populations that can respond to hormonal stimulus.

View Article and Find Full Text PDF

Background: γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain where it regulates activity of neuronal networks. The receptor for glucagon-like peptide-1 (GLP-1) is expressed in the hippocampus, which is the center for memory and learning. In this study we examined effects of liraglutide, a GLP-1 analog, on GABA signaling in CA3 hippocampal pyramidal neurons.

View Article and Find Full Text PDF

Marine Protected Areas (MPA) are important management tools shown to protect marine organisms, restore biomass, and increase fisheries yields. While MPAs have been successful in meeting these goals for many relatively sedentary species, highly mobile organisms may get few benefits from this type of spatial protection due to their frequent movement outside the protected area. The use of a large MPA can compensate for extensive movement, but testing this empirically is challenging, as it requires both large areas and sufficient time series to draw conclusions.

View Article and Find Full Text PDF