Publications by authors named "Birkaya B"

Background: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored.

View Article and Find Full Text PDF

The combination of advanced mass spectrometry and enrichment-based sample preparation methods has enhanced analytical capabilities in clinical proteomics. In this chapter, we describe a method of proteome analysis to identify Borrelia-derived peptides in urine that includes a sample affinity enrichment method coupled with liquid chromatography tandem mass spectrometry analysis and a bioinformatic peptide authentication algorithm.

View Article and Find Full Text PDF

Neuroinflammation in Alzheimer's disease (AD) has been the focus for identifying targetable pathways for drug development. The role of amyloid beta (Aβ), a prototype of damage-associated molecular patterns (DAMPs), has been implicated in triggering an inflammatory response. As alpha7 nicotinic acetylcholine receptor (α7 nAChR) binds Aβ with high affinity, α7 nAChR may play a role in Aβ-induced neuroinflammation.

View Article and Find Full Text PDF

Background: Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models.

Methods: Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aβ uptake.

View Article and Find Full Text PDF

The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target.

View Article and Find Full Text PDF

The human pyruvate dehydrogenase complex (PDC) comprises four multidomain components, E1, E3, E2 and an E3-binding protein (E3BP), the latter two forming the core as E2·E3BP sub-complex. Pyruvate flux through PDC is regulated via phosphorylation (inactivation) at E1 by four PDC kinases (PDKs), and reactivation by two PDC phosphatases. Up-regulation of PDK isoform gene expression is reported in several forms of cancer, while PDKs may be further activated by PDC by binding to the E2·E3BP core.

View Article and Find Full Text PDF

The last decade has witnessed the reawakening of cancer metabolism as a therapeutic target. In particular, inhibition of pyruvate dehydrogenase kinase (PDK) holds remarkable promise. Dichloroacetic acid (DCA), currently undergoing clinical trials, is a unique PDK inhibitor in which it binds to the allosteric pyruvate site of the enzyme.

View Article and Find Full Text PDF

During the absorptive state, the liver stores excess glucose as glycogen and synthesizes fatty acids for triglyceride synthesis for export as very low density lipoproteins. For de novo synthesis of fatty acids from glucose, the mitochondrial pyruvate dehydrogenase complex (PDC) is the gatekeeper for the generation of acetyl-CoA from glucose-derived pyruvate. Here, we tested the hypothesis that limiting the supply of PDC-generated acetyl-CoA from glucose would have an impact on expression of key genes in the lipogenic pathway.

View Article and Find Full Text PDF

Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyltransferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor-mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells.

View Article and Find Full Text PDF

A universal signaling module has been described which utilizes the nuclear form of Fibroblast growth Factor Receptor 1 (FGFR1) in a central role directing the post-mitotic development of neural cells through coordinated gene expression. In this review, we discuss in detail the current knowledge of FGFR1 nuclear interaction partners in three scenarios: (i) Engagement of FGFR1 in neuronal stem cells and regulation of neuronal differentiation; (ii) interaction with the orphan receptor Nurr1 in development of mesencephalic dopaminergic neurons; (iii) modulation of nuclear FGFR1 interactions downstream of nerve growth factor (NGF) signaling. These coalitions demonstrate the versatility of non-canonical, nuclear tyrosine kinase signaling in diverse cellular differentiation programs of neurons.

View Article and Find Full Text PDF

Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes.

View Article and Find Full Text PDF

In this review we summarize the current understanding of a novel integrative function of Fibroblast Growth Factor Receptor-1 (FGFR1) and its partner CREB Binding Protein (CBP) acting as a nuclear regulatory complex. Nuclear FGFR1 and CBP interact with and regulate numerous genes on various chromosomes. FGFR1 dynamic oscillatory interactions with chromatin and with specific genes, underwrites gene regulation mediated by diverse developmental signals.

View Article and Find Full Text PDF

The human pyruvate dehydrogenase complex (PDC) comprises three principal catalytic components for its mission: E1, E2, and E3. The core of the complex is a strong subcomplex between E2 and an E3-binding protein (E3BP). The PDC is subject to regulation at E1 by serine phosphorylation by four kinases (PDK1-4), an inactivation reversed by the action of two phosphatases (PDP1 and -2).

View Article and Find Full Text PDF

Reactivation of endogenous neurogenesis in the adult brain or spinal cord holds the key for treatment of central nervous system injuries and neurodegenerative disorders, which are major health care issues for the world's aging population. We have previously shown that activation of developmental integrative nuclear fibroblast growth factor receptor 1 (FGFR1) signaling (INFS), via gene transfection, reactivates neurogenesis in the adult brain by promoting neuronal differentiation of brain neural stem/progenitor cells (NS/PCs). In the present study, we report that targeting the α7 nicotinic acetylcholine receptors (α7nAChRs) with a specific TC-7020 agonist led to a robust accumulation of endogenous FGFR1 in the cell nucleus.

View Article and Find Full Text PDF

Reactivation of neurogenesis by endogenous Neural Stem/Progenitor Cells (NS/PC) in the adult brain or spinal cord holds the key for treatment of CNS injuries as well as neurodegenerative disorders, which are major healthcare issues for the world's aging population. Recent studies show that targeting the α7 nicotinic acetylcholine receptors (α7nAChR) with a specific TC-7020 agonist inhibits proliferation and stimulates neuronal differentiation of NS/PC in subventricular zone (SVZ) in the adult mouse brain. TC-7020-induced neuronogenesis is observed in different brain regions, including: (1) βIII Tubulin-expressing cortical neurons, (2) calretinin expressing hippocampal neurons and (3) cells in substantia nigra (SN) expressing predopaminergic Nurr1+phenotype.

View Article and Find Full Text PDF

Nerve growth factor (NGF) is the founding member of the polypeptide neurotrophin family responsible for neuronal differentiation. To determine whether the effects of NGF rely upon novel Integrative Nuclear FGF Receptor-1 (FGFR1) Signaling (INFS) we utilized the PC12 clonal cell line, a long-standing benchmark model of sympathetic neuronal differentiation. We demonstrate that NGF increases expression of the fgfr1 gene and promotes trafficking of FGFR1 protein from cytoplasm to nucleus by inhibiting FGFR1 nuclear export.

View Article and Find Full Text PDF

Schizophrenia is a neurodevelopmental disorder featuring complex aberrations in the structure, wiring, and chemistry of multiple neuronal systems. The abnormal developmental trajectory of the brain appears to be established during gestation, long before clinical symptoms of the disease appear in early adult life. Many genes are associated with schizophrenia, however, altered expression of no one gene has been shown to be present in a majority of schizophrenia patients.

View Article and Find Full Text PDF

FGF Receptor-1 (FGFR1), a membrane-targeted protein, is also involved in independent direct nuclear signaling. We show that nuclear accumulation of FGFR1 is a common response to retinoic acid (RA) in pluripotent embryonic stem cells (ESC) and neural progenitors and is both necessary and sufficient for neuronal-like differentiation and accompanying neuritic outgrowth. Dominant negative nuclear FGFR1, which lacks the tyrosine kinase domain, prevents RA-induced differentiation while full-length nuclear FGFR1 elicits differentiation in the absence of RA.

View Article and Find Full Text PDF

Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation.

View Article and Find Full Text PDF

Cell adhesion is a key feature in the regulation of many biological processes. In the budding yeast Saccharomyces cerevisiae, Flo11p is the major adhesion molecule that controls filamentous growth [1-3] and the expansion of interconnected cells in mats or biofilms [4]. We show here that Flo11p is shed from cells.

View Article and Find Full Text PDF

An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway.

View Article and Find Full Text PDF

Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae. Genes encoding proteins with established functions in transcriptional activation (MCM1, MATalpha2, PHD1, MSN2, SIR4, and HMS2), cell wall integrity (MPT5, WSC2, and MID2), and cell polarity (BUD5) were identified as potential regulators of FG.

View Article and Find Full Text PDF

Background: One major defining characteristic of the basal keratinocytes of the stratified epithelium is the expression of the keratin genes K5 and K14. The temporal and spatial expression of these two genes is usually tightly and coordinately regulated at the transcriptional level. This ensures the obligate pairing of K5 and K14 proteins to generate an intermediate filament (IF) network that is essential for the structure and function of the proliferative keratinocytes.

View Article and Find Full Text PDF

A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeast's native environments, the grape-producing plant Vitis vinifera.

View Article and Find Full Text PDF

Background: p63 is a transcription factor that plays an important role in skin epidermal development and differentiation. The p63 gene encodes for two major protein isoforms, those containing an amino-terminal trans-activation domain (TAp63) and those lacking this domain (DeltaNp63). Both the TA and DeltaN transcripts are also alternatively spliced at the 3' end producing proteins with unique C-termini that are designated as alpha, beta and gamma isoforms.

View Article and Find Full Text PDF