Publications by authors named "Birinyi A"

Normal brain development requires continuous communication between developing neurons and their environment filled by a complex network referred to as extracellular matrix (ECM). The ECM is divided into distinct families of molecules including hyaluronic acid, proteoglycans, glycoproteins such as tenascins, and link proteins. In this study, we characterize the temporal and spatial distribution of the extracellular matrix molecules in the embryonic and postnatal mouse hindbrain by using antibodies and lectin histochemistry.

View Article and Find Full Text PDF

Coordinated movement of the jaw is essential for catching and swallowing the prey. The majority of the jaw muscles in frogs are supplied by the trigeminal motoneurons. We have previously described that the primary vestibular afferent fibers, conveying information about the movements of the head, established close appositions on the motoneurons of trigeminal nerve providing one of the morphological substrates of monosynaptic sensory modulation of prey-catching behavior in the frog.

View Article and Find Full Text PDF

The prey-catching behavior of the frog is a complex, well-timed sequence of stimulus response chain of movements. After visual analysis of the prey, a size dependent program is selected in the motor pattern generator of the brainstem. Besides this predetermined feeding program, various direct and indirect sensory inputs provide flexible adjustment for the optimal contraction of the executive muscles.

View Article and Find Full Text PDF

The prepositus hypoglossi nucleus (PHN) is a mossy fiber-generating precerebellar nucleus of the brainstem, regarded as one of the neural integrators of the vestibulo-ocular reflex. The aim of the present work is to reveal the distribution of various molecular components of the extracellular matrix (ECM) in the prepositus hypoglossi nucleus by using histochemical and immunohistochemical methods. Our most characteristic finding was the accumulation of the ECM as perineuronal net (PNN) and axonal coat and we detected conspicuous differences between the magnocellular (PHNm) and parvocellular (PHNp) divisions of the PHN.

View Article and Find Full Text PDF

The hypoglossal motor nucleus is one of the efferent components of the neural network underlying the tongue prehension behavior of Ranid frogs. Although the appropriate pattern of the motor activity is determined by motor pattern generators, sensory inputs can modify the ongoing motor execution. Combination of fluorescent tracers were applied to investigate whether there are direct contacts between the afferent fibers of the trigeminal, facial, vestibular, glossopharyngeal-vagal, hypoglossal, second cervical spinal nerves and the hypoglossal motoneurons.

View Article and Find Full Text PDF

Extracellular matrix (ECM) accumulates around different neuronal compartments of the central nervous system (CNS) or appears in diffuse reticular form throughout the neuropil. In the adult CNS, the perineuronal net (PNN) surrounds the perikarya and dendrites of various neuron types, whereas the axonal coats are aggregations of ECM around the individual synapses, and the nodal ECM is localized at the nodes of Ranvier. Previous studies in our laboratory demonstrated on rats that the heterogeneous distribution and molecular composition of ECM is associated with the variable cytoarchitecture and hodological organization of the vestibular nuclei and may also be related to their specific functions in gaze and posture control as well as in the compensatory mechanisms following vestibular lesion.

View Article and Find Full Text PDF

Prey-catching behavior (PCB) of the frog consists of a sequence of movements as a stimulus-response chain of the behavioral pattern in which each action presents a signal for the subsequent event. The transformation of visual information into appropriate spatiotemporal patterns of motor activity is carried out by the motor pattern generators located in the brainstem reticular formation. The motor pattern generators provide input to the motoneurons either directly or via the last-order premotor interneurons (LOPI).

View Article and Find Full Text PDF

Prey-catching behavior (PCB) of the frog consists of a sequence of coordinated activity of muscles which is modified by various sensory signals. The aim of the present study was, for the first time, to examine the involvement of the trigeminal afferents in the swallowing phase of PCB. Experiments were performed on Rana esculenta, where the trigeminal and glossopharyngeal (IX)-vagus (X) nerves were labeled simultaneously with different fluorescent dyes.

View Article and Find Full Text PDF

Correct interpretation of functional data obtained from various cell types of the cochlear nucleus (CN), a structure involved in auditory information processing, necessitates reliable cell identification. Our aim was to perform a quantitative morphological characterization of giant and pyramidal cells of the rat CN and identify parameters that are suitable for their adequate classification. Neurons were labeled with biocytin, visualized with a fluorescent marker, and three-dimensionally reconstructed from confocal images.

View Article and Find Full Text PDF

Background: The location specific motor pattern generation properties of the spinal cord along its rostro-caudal axis have been demonstrated. However, it is still unclear that these differences are due to the different spinal interneuronal networks underlying locomotions or there are also segmental differences in motoneurons innervating different limbs. Frogs use their fore- and hindlimbs differently during jumping and swimming.

View Article and Find Full Text PDF

The circuits that generate rhythmic locomotor activities are located in the ventromedial area of the lumbar spinal cord and comprise commissural interneurons necessary for left-right alternation during walking movements. In this study we injected biotinylated dextran amine (BDA) into the ventromedial gray matter of the lumbar spinal cord of neonatal rats to label commissural interneurons. Anterogradely labeled axons arose from the site of injection, crossed the midline in the anterior commissure and arborized extensively in the contralateral ventral horn of the spinal cord.

View Article and Find Full Text PDF

We give an account of an effort to make quantitative morphological distinctions between motoneurons of the frog innervating functionally different groups of muscles involved in the movements of the tongue. The protractor, retractor, and inner muscles of the tongue were considered on the basis of their major action during the prey-catching behavior of the frog. Motoneurons were selectively labeled with cobalt lysin through the nerves of the individual muscles, and dendritic trees of successfully labeled neurons were reconstructed.

View Article and Find Full Text PDF

There is strong evidence that commissural interneurons, neurons with axons that extend to the contralateral side of the spinal cord, play an important role in the coordination of left/right alternation during locomotion. In this study we investigated the projections of commissural interneurons to motor neurons and other commissural interneurons on the other side of the spinal cord in neonatal rats. To establish whether there are direct contacts between axons of commissural interneurons and motor neurons, we carried out two series of experiments.

View Article and Find Full Text PDF

The giant reticulospinal synapse in lamprey provides a unique model to study synaptic vesicle traffic. The axon permits microinjections, and the active zones are often separated from each other, which makes it possible to track vesicle cycling at individual release sites. However, the proportion of reticulospinal synapses with individual active zones ("simple synapses") is unknown and a quantitative description of their organization is lacking.

View Article and Find Full Text PDF

Vestibular nerve branches innervating the sensory epithelia of the three semicircular canals or of the three otolith organs of frogs were selectively labeled in-vitro with biocytin. Labeled afferent fibers from the semicircular canals, utricle, and lagena were encountered in each of the four vestibular nuclei and their projections overlapped considerably. Saccular afferent fibers projected to the dorsal (acoustic) nuclei and smaller projections to the vestibular nuclei were regionally restricted.

View Article and Find Full Text PDF

Intracellular stimulation of single propriospinal axons evoked excitatory postsynaptic potentials (EPSPs) in lumbar motoneurons. Mean EPSP amplitudes differed by two orders of magnitude when measured in different connections. After analyzing the distribution of mean amplitudes of 47 single-fiber EPSPs, two populations of responses could be defined: (1) those with mean amplitudes between 0.

View Article and Find Full Text PDF

The presence of zinc in synaptic terminals in the lamprey spinal cord was examined utilizing a modification of the Timm's sulfide silver method and with the fluorescent marker 6-methoxy-8-quinolyl-p-toluenesulfonamide (TSQ). Axons labeled with a Timm's staining method were predominantly located in the lateral region of the dorsal column. This correlated with a maximum of TSQ fluorescence in this region of the spinal cord.

View Article and Find Full Text PDF

The sluggish-A (slgA) gene of Drosophila melanogaster has been shown to encode for the enzyme proline oxidase, a mitochondrial enzyme which catalyzes the first step in the conversion of L-proline to L-glutamate. The slgA transcript is expressed in both larval and adult Drosophila melanogaster. Mutations in this gene lead to reduced proline oxidase activity and an elevation of free proline levels.

View Article and Find Full Text PDF

There is general agreement that last-order premotor interneurons-a set of neurons that integrate activities generated by the spinal motor apparatus, sensory information and volleys arising from higher motor centres, and transmit the integrated signals to motoneurons through monosynaptic contacts-play crucial roles in the initiation and maintenance of spinal motor activities. Here, we demonstrate the development, neurochemical properties, and axonal projections of a unique group of last-order premotor interneurons within the ventrolateral aspect of the lateral funiculus of the chick lumbosacral spinal cord. Neurons expressing immunoreactivity for neuron-specific enolase were first detected in the ventrolateral white matter at embryonic day 9 (E9).

View Article and Find Full Text PDF

Cobalt labelling studies on the localization and morphology of the frog's hypoglossal nucleus have revealed three subnuclei. The dorsomedial subnucleus innervates the geniohyoid, hyoglossus, genioglossus and the intrinsic tongue muscles. The ventrolateral subnucleus supplies the sternohyoid, geniohyoid, omohyoid and intrinsic tongue muscles.

View Article and Find Full Text PDF

The main goal of this paper is twofold. First, to classify some of the quantitative morphological descriptors within a common theoretical framework and to illustrate their use in the neurobiological research. The second aim is to describe how the computer modelling of dendritic impulse propagation could be related to those high-fidelity morphological databases of dendritic arborizations that we had obtained by three-dimensional reconstructions.

View Article and Find Full Text PDF

The main goal of this work was to develop and test the accuracy of our 3DARBOR neuronal tree reconstruction system by comparing it with a very precise but time-consuming method of reconstruction (NEUTRACE). Comparison was performed by reconstructing 18 dendritic trees of frog spinal motoneurons from serial sections with both methods and comparing several morphological summaries of the two reconstructions. In 3DARBOR the planar projection of the dendritic trees was drawn and fed into an IBM-compatible PC through a graphic tablet.

View Article and Find Full Text PDF

We give an account of an effort to make quantitative morphological distinctions between motoneurons innervating functionally different muscles in the trigeminal and facial motor nuclei of the frog. Six groups of neurons were considered in the two nuclei on the basis of their peripheral targets. One group consisted of neurons (n = 7) innervating the levator bulbi muscle, which separates the orbital cavity from the oral cavity.

View Article and Find Full Text PDF

The development, morphological and neurochemical properties of specific populations of interneurons were investigated in the ventral horn of the embryonic and mature chick lumbosacral spinal cord by using pre- and post-embedding immunocytochemical as well as anterograde axonal tracing techniques. We have identified and traced the morphological maturation of the following cell groups: (1) Neurons immunoreactive for calbindin-D 28k (CaB), a calcium-binding protein that has been reported to be a marker of certain subsets of excitatory spinal neurons. We have distinguished and traced the maturation of three CaB-immunoreactive cell groups in the ventral horn; (2) Neurons immunoreactive for GABA and glycine, the two putative inhibitory amino acid neurotransmitters in the spinal cord; (3) Neurons within the nucleus marginalis, a cell group located in the ventrolateral aspect of the white matter in close proximity to the lateral motor column.

View Article and Find Full Text PDF

The cobalt labelling technique was applied to different branches of the frog trigeminal and facial nerves and the representation of muscle supplied by these nerves were studied. (1) The levator bulbi muscle is innervated by a small group of neurons localised in its rostromedial part of the trigeminal motor nucleus (nV). (2) The jaw closer muscles are represented in the rostral two thirds of the nV.

View Article and Find Full Text PDF