Publications by authors named "Birgul O"

Photoacoustic microscopy (PAM) is classified as a hybrid imaging technique based on the photoacoustic effect and has been frequently studied in recent years. Photoacoustic (PA) signals are inherently recorded in a noisy environment and are also exposed to noise by system components. Therefore, it is essential to reduce the noise in PA signals to reconstruct images with less error.

View Article and Find Full Text PDF

Antiscatter grids improve the X-ray image contrast at a cost of patient radiation doses. The choice of appropriate grid or its removal requires a good knowledge of grid characteristics, especially for pediatric digital imaging. The aim of this work is to understand the relation between grid performance parameters and some numerical image quality metrics for digital radiological examinations.

View Article and Find Full Text PDF

Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms.

View Article and Find Full Text PDF

We present simultaneous measurement of enhancement kinetics of an optical and a magnetic resonance (MR) contrast agent in a small animal breast tumor model (R3230 ac) using a combined MR-diffuse optical tomographic (MR-DOT) imaging system. A mixture of a small molecular-weight MR contrast agent gadolinium-diethylene-triamine-pentaacetic acid (Gd-DTPA) and a large molecular-weight optical contrast agent indocyanine green (ICG) was administered intravenously for multimodal dynamic imaging. Coregistration of optical and MR images was accomplished using agar-water-based markers.

View Article and Find Full Text PDF

Structural changes in water molecules are related to physiological, anatomical and pathological properties of tissues. Near infrared (NIR) optical absorption methods are sensitive to water; however, detailed characterization of water in thick tissues is difficult to achieve because subtle spectral shifts can be obscured by multiple light scattering. In the NIR, a water absorption peak is observed around 975 nm.

View Article and Find Full Text PDF

We investigated (1) the variability of indocyanine green kinetics (ICG) between different cases in the existence of random noise, changing the size of the imaging region, the location and the size of the inclusion, (2) the use of structural a priori information to reduce the variability. We performed two-dimensional simulation studies for this purpose. In the simulations, we used a two-compartmental model to describe the ICG transport and obtained pharmacokinetic parameters.

View Article and Find Full Text PDF

We investigated the use of multifrequency diffuse optical tomography (MF-DOT) data for the reconstruction of the optical parameters. The experiments were performed in a 63 mm diameter cylindrical phantom containing a 15 mm diameter cylindrical object. Modulation frequencies ranging from 110 MHz to 280 MHz were used in the phantom experiments changing the contrast in absorption of the object with respect to the phantom while keeping the scattering value the same.

View Article and Find Full Text PDF

Magnetic resonance-electrical impedance tomography employs low amplitude currents injected or induced inside an object. The additional magnetic field due to these currents results in a phase in the MR images. In this study, a modified fast spin-echo sequence was used to measure this magnetic field, which is obtained by scaling the MR phase image.

View Article and Find Full Text PDF

A significant increase in electrical conductivity of neoplasticities compared to healthy tissues and benign formations has been reported in several studies. We previously reported preliminary results with MR based Electrical Impedance Tomography (MREIT) on several phantoms and a single animal. In the presented study, we applied the technique on ten tumor-bearing rats and collected MREIT images to investigate the potential of MREIT for characterizing malignant tumors.

View Article and Find Full Text PDF

Recently, there has been a great amount of interest in developing multi-modality imaging techniques for oncologic research and clinical studies with the aim of obtaining complementary information and, thus, improving the detection and characterization of tumors. In this present work, the details of a combined MR-diffuse optical imaging system for dual-modality imaging of small animals are given. As a part of this effort, a multi-spectral frequency domain diffuse optical tomography system is integrated with an MRI system.

View Article and Find Full Text PDF

In magnetic resonance electrical impedance tomography (MREIT), currents are applied to an object, the resulting magnetic flux density measured using MRI and the conductivity distribution reconstructed using these MRI data. In this study, we assess the ability of MREIT to monitor changes in the conductivity distribution of an agarose gel phantom, using injected current pulses of 900 microA. The phantom initially contained a distinct region of high sodium chloride concentration which diffused into the background over time.

View Article and Find Full Text PDF

The design and implementation of a multifrequency and multispectral diffuse optical tomography system is described. Four wavelengths are utilized: 665, 785, 808, and 830 nm. The system is based on a network analyzer, which provides rf modulation signals for the laser diodes, as well as measures the amplitude and the phase of the detected signals.

View Article and Find Full Text PDF

It has been reported that the electrical impedance of malignancies could be 20-40 times lower than healthy tissues and benign formations. Therefore, in vivo impedance imaging of suspicious lesions may prove to be helpful in improving the sensitivity and specificity of detecting malignant tumors. Several systems have been developed to map the conductivity distribution inside a volume of tissue, however they suffer from poor spatial resolution because the measurements are taken only from surface electrodes.

View Article and Find Full Text PDF

Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.

View Article and Find Full Text PDF

Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation.

View Article and Find Full Text PDF

The point spread function (PSF) is the most widely used tool for quantifying the spatial resolution of imaging systems. However, prerequisites for the proper use of this tool are linearity and space invariance. Because EIT is non-linear it is only possible to compare different reconstruction algorithms using a standard data set.

View Article and Find Full Text PDF