Publications by authors named "Birgitte Lygren"

Cell fusion occurs as part of the differentiation of some cell types, including myotubes in muscle and osteoclasts in remodeling bone. In the human placenta, mononuclear cytotrophoblasts in a human chorionic gonadotropin (hCG)-driven process fuse to form multinucleated syncytia that allow the exchange of nutrients and gases between the maternal and fetal circulation. Experiments in which protein kinase A (PKA) is displaced from A-kinase anchoring proteins (AKAPs), or in which specific AKAPs are depleted by siRNA-mediated knockdown, point to ezrin as a scaffold required for hCG-, cAMP- and PKA-mediated regulation of the fusion process.

View Article and Find Full Text PDF

Cholera is a disease which shows a clear blood group profile, with blood group O individuals experiencing the most severe symptoms. For a long time, the cholera toxin has been suspected to be the main culprit of this blood group dependence. Here, we show that both El Tor and classical cholera toxin B-pentamers do indeed bind blood group determinants (with equal affinities), using Surface Plasmon Resonance and NMR spectroscopy.

View Article and Find Full Text PDF

A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) to intracellular sites where they preferentially phosphorylate target substrates. Most AKAPs exhibit nanomolar affinity for the regulatory (RII) subunit of the type II PKA holoenzyme, whereas dual-specificity anchoring proteins also bind the type I (RI) regulatory subunit of PKA with 10-100-fold lower affinity. A range of cellular, biochemical, biophysical, and genetic approaches comprehensively establish that sphingosine kinase interacting protein (SKIP) is a truly type I-specific AKAP.

View Article and Find Full Text PDF

We recently reported that the dual-specificity AKAP (A-kinaseanchoring protein) Ezrin targets type I PKA (protein kinase A) to the vicinity of the TCR (T-cell receptor) in T-cells and, together with PAG (phosphoprotein associated with glycosphingolipid-enriched membrane microdomains) and EBP50 [ERM (Ezrin/Radixin/Moesin)-binding phosphoprotein 50], forms a scaffold that positions PKA close to its substrate, Csk (C-terminal Src kinase). This complex is important for controlling the activation state of T-cells. Ezrin binds the adaptor protein EBP50, which again contacts PAG.

View Article and Find Full Text PDF

We have reported previously the design of a RIAD (RI-anchoring disruptor) peptide that specifically displaces PKA (protein kinase A) type I from the AKAP (A-kinase-anchoring protein) ezrin, which is present in the immunological synapse of T-cells. This increases immune reactivity by reducing the threshold for activation and may prove a feasible approach for improving immune function in patients with cAMP-mediated T-cell dysfunction. However, the use of RIAD in biological systems is restricted by its susceptibility to enzymatic cleavage and, consequently, its short half-life in presence of the ubiquitous serum peptidases.

View Article and Find Full Text PDF

A-kinase anchoring proteins (AKAPs) target protein kinase A (PKA) to a variety of subcellular locations. Conventional AKAPs contain a 14-18-amino acid sequence that forms an amphipathic helix that binds with high affinity to the regulatory (R) subunit of PKA type II. More recently, a group of dual specificity AKAPs has been classified on the basis of their ability to bind the PKA type I and the PKA type II isozymes.

View Article and Find Full Text PDF

Background: The adrenaline-beta-adrenoreceptor-cAMP-protein kinase A signaling pathway regulates heart rate and contractility. Although changes in contractility are associated with cardiovascular disease, surprisingly few drugs are available that modulate the cardiac myocyte cAMP system. Beta-blocking agents reduce cAMP levels only by 50%.

View Article and Find Full Text PDF

Aims: Chronic obstructive pulmonary disease with alveolar hypoxia is associated with diastolic dysfunction in the right and left ventricle (LV). LV diastolic dysfunction is not caused by increased afterload, and we recently showed that reduced phosphorylation of phospholamban at serine (Ser) 16 may explain the reduced relaxation of the myocardium. Here, we study the mechanisms leading to the hypoxia-induced reduction in phosphorylation of phospholamban at Ser16.

View Article and Find Full Text PDF

The beta-adrenergic receptor/cyclic AMP/protein kinase A (PKA) signalling pathway regulates heart rate and contractility. Here, we identified a supramolecular complex consisting of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2), its negative regulator phospholamban (PLN), the A-kinase anchoring protein AKAP18delta and PKA. We show that AKAP18delta acts as a scaffold that coordinates PKA phosphorylation of PLN and the adrenergic effect on Ca(2+) re-uptake.

View Article and Find Full Text PDF

Localization of cyclic AMP (cAMP)-dependent protein kinase (PKA) by A kinase-anchoring proteins (AKAPs) restricts the action of this broad specificity kinase. The high-resolution crystal structures of the docking and dimerization (D/D) domain of the RIIalpha regulatory subunit of PKA both in the apo state and in complex with the high-affinity anchoring peptide AKAP-IS explain the molecular basis for AKAP-regulatory subunit recognition. AKAP-IS folds into an amphipathic alpha helix that engages an essentially preformed shallow groove on the surface of the RII dimer D/D domains.

View Article and Find Full Text PDF

Control of specificity in cAMP signaling is achieved by A-kinase anchoring proteins (AKAPs), which assemble cAMP effectors such as protein kinase A (PKA) into multiprotein signaling complexes in the cell. AKAPs tether the PKA holoenzymes at subcellular locations to favor the phosphorylation of selected substrates. PKA anchoring is mediated by an amphipathic helix of 14-18 residues on each AKAP that binds to the R subunit dimer of the PKA holoenzymes.

View Article and Find Full Text PDF

We describe a fast and sensitive method for isolation of detergent-resistant membranes (DRMs) from T cells by sucrose density gradient centrifugation using a smaller accumulated centrifugal force in a tabletop ultracentrifuge. Compared to previous reports, this method, which requires less biological material, is faster and permits quantitative separation of DRMs from other cellular membranes with good resolution. The method, which can be completed in 6 h, yields more than 80% of the total content of DRM-associated adaptor molecules LAT (linker for T cell activation), PAG/Cbp (protein associated with glycosphingolipid-enriched microdomains or Csk-binding protein) and LIME (Lck-interacting membrane protein) in low-density fractions using only 2x10(7) T cells.

View Article and Find Full Text PDF

We employ a novel, dominant negative approach to identify a key role for certain tethered cyclic AMP specific phosphodiesterase-4 (PDE4) isoforms in regulating cyclic AMP dependent protein kinase A (PKA) sub-populations in resting COS1 cells. A fraction of PKA is clearly active in resting COS1 cells and this activity increases when cells are treated with the selective PDE4 inhibitor, rolipram. Point mutation of a critical, conserved aspartate residue in the catalytic site of long PDE4A4, PDE4B1, PDE4C2 and PDE4D3 isoforms renders them catalytically inactive.

View Article and Find Full Text PDF

Gains of 1q21-q23 have been associated with metastasis and chemotherapy response, particularly in bladder cancer, hepatocellular carcinomas and sarcomas. By positional cloning of amplified genes by yeast artificial chromosome-mediated cDNA capture using magnetic beads, we have identified three candidate genes (COAS1, -2 and -3) in the amplified region in sarcomas. COAS1 and -2 showed higher amplification levels than COAS3.

View Article and Find Full Text PDF