Publications by authors named "Birgitta Leuthner"

Article Synopsis
  • The study focuses on improving the understanding and identification of molecular glue substrates related to the E3 ligase receptor cereblon (CRBN), commonly used in clinical degraders.* -
  • Researchers engineered human CRBN constructs for efficient production in E. coli, achieving a balance between high binding activity and production ease.* -
  • The team developed an "Enamine focused IMiD library" for high-throughput screening, successfully identifying effective binders and laying the groundwork for future CRBN glue discoveries.*
View Article and Find Full Text PDF

In this work, we report the discovery of potent anti-epidermal growth factor receptor (EGFR) allosteric heavy-chain antibodies by combining camelid immunization and fluorescence-activated cell sorting (FACS). After immunization and yeast surface display library construction, allosteric clones were obtained by introducing the labeled EGF Fc fusion protein as an additional criterion for FACS. This sorting method enabled the identification of 11 heavy-chain antibodies that did not compete with the orthosteric ligand EGF for the binding to EGFR.

View Article and Find Full Text PDF

RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF/14-3-3 at 3.

View Article and Find Full Text PDF

N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors induced in diverse pathophysiological settings. Inhibition of HIF-2α has become a strategy for cancer treatment since the discovery that small molecules, upon binding into a small cavity of the HIF-2α PAS B domain, can alter its conformation and disturb the activity of the HIF dimer complex. Herein, the design, synthesis, and systematic SAR exploration of cycloalkyl[]thiophenes as novel HIF-2α inhibitors are described, providing the first chemotype featuring an alkoxy-aryl scaffold.

View Article and Find Full Text PDF

Herein, we describe a systematic SAR- and SPR-investigation of the peptidomimetic hydroxy-proline based VHL-ligand VH032, from which most to-date published VHL-targeting PROTACs have been derived. This study provides for the first time a consistent data set which allows for direct comparison of structural variations including those which were so far hidden in patent literature. The gained knowledge about improved VHL binders was used to design a small library of highly potent BRD4-degraders comprising different VHL exit vectors.

View Article and Find Full Text PDF

Intracellular distribution of drug compounds is dependent on physicochemical characteristics and may have a significant bearing on the extent of target occupancy and, ultimately, drug efficacy. We assessed differences in the physicochemical profiles of MET inhibitors capmatinib, crizotinib, savolitinib, and tepotinib and their effects on cell viability and MET phosphorylation under steady-state and washout conditions (to mimic an open organic system) in a human lung cancer cell line. To examine the differences of the underlying molecular mechanisms at the receptor level, we investigated the residence time at the kinase domain and the cellular target engagement.

View Article and Find Full Text PDF

Constitutive activation of the canonical Wnt signaling pathway, in most cases driven by inactivation of the tumor suppressor APC, is a hallmark of colorectal cancer. Tankyrases are druggable key regulators in these malignancies and are considered as attractive targets for therapeutic interventions, although no inhibitor has been progressed to clinical development yet. We continued our efforts to develop tankyrase inhibitors targeting the nicotinamide pocket with suitable drug-like properties for investigating effects of Wnt pathway inhibition on tumor growth.

View Article and Find Full Text PDF
Article Synopsis
  • Triazolo[4,5-d]pyrimidin-5-amines are identified as new ERK3 inhibitors that work effectively at concentrations below 100 nanomolar in lab tests.
  • Their binding mode was characterized using ERK3 crystal structures, showing how they affect critical loops and helices in the ATP pocket, which could enhance MK5 interactions.
  • These inhibitors demonstrated strong performance in both biochemical assays and a cellular ERK3 NanoBRET assay, paving the way for further research on ERK3's biological roles and activation processes.
View Article and Find Full Text PDF

Accurate ranking of compounds with regards to their binding affinity to a protein using computational methods is of great interest to pharmaceutical research. Physics-based free energy calculations are regarded as the most rigorous way to estimate binding affinity. In recent years, many retrospective studies carried out both in academia and industry have demonstrated its potential.

View Article and Find Full Text PDF

The recently disclosed next generation of reversible, selective, and potent MetAP-2 inhibitors introduced a cyclic tartronic diamide scaffold. However, the lead compound suffered from enterohepatic circulation, preventing further development. Nevertheless, served as a starting point for further optimization.

View Article and Find Full Text PDF

Fragment-based screening by SPR enabled the discovery of chemical diverse fragment hits with millimolar binding affinities to the peptidyl-prolyl isomerase Cyclophilin D (CypD). The CypD protein crystal structures of 6 fragment hits provided the basis for subsequent medicinal chemistry optimization by fragment merging and linking yielding three different chemical series with either urea, oxalyl or amide linkers connecting millimolar fragments in the S1' and S2 pockets. We successfully improved the in vitro CypD potencies in the biochemical FP and PPIase assays and in the biophysical SPR binding assay from millimolar towards the low micromolar and submicromolar range by >1000-fold for some fragment derivatives.

View Article and Find Full Text PDF

Tankyrases 1 and 2 (TNKS1/2) are promising pharmacological targets that recently gained interest for anticancer therapy in Wnt pathway dependent tumors. 2-Aryl-quinazolinones were identified and optimized into potent tankyrase inhibitors through SAR exploration around the quinazolinone core and the 4'-position of the phenyl residue. These efforts were supported by analysis of TNKS X-ray and WaterMap structures and resulted in compound , a potent, selective tankyrase inhibitor with favorable pharmacokinetic properties.

View Article and Find Full Text PDF

Co- and post-translational processing are crucial maturation steps to generate functional proteins. MetAP-2 plays an important role in this process, and inhibition of its proteolytic activity has been shown to be important for angiogenesis and tumor growth, suggesting that small-molecule inhibitors of MetAP-2 may be promising options for the treatment of cancer. This work describes the discovery and structure-based hit optimization of a novel MetAP-2 inhibitory scaffold.

View Article and Find Full Text PDF

Inhibition of the PARP superfamily tankyrase enzymes suppresses Wnt/β-catenin signalling in tumour cells. Here, we describe here a novel, drug-like small molecule inhibitor of tankyrase MSC2504877 that inhibits the growth of APC mutant colorectal tumour cells. Parallel siRNA and drug sensitivity screens showed that the clinical CDK4/6 inhibitor palbociclib, causes enhanced sensitivity to MSC2504877.

View Article and Find Full Text PDF

The natural product fumagillin 1 and derivatives like TNP-470 2 or beloranib 3 bind to methionine aminopeptidase 2 (MetAP-2) irreversibly. This enzyme is critical for protein maturation and plays a key role in angiogenesis. In this paper we describe the synthesis, MetAP-2 binding affinity and structural analysis of reversible MetAP-2 inhibitors.

View Article and Find Full Text PDF

WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine-piperidine bond of 9 by small-molecule X-ray crystallography.

View Article and Find Full Text PDF

We discovered a novel series of non-peptidic acylguanidine inhibitors of Cathepsin D as target for osteoarthritis. The initial HTS-hits were optimized by structure-based design using CatD X-ray structures resulting in single digit nanomolar potency in the biochemical CatD assay. However, the most potent analogues showed only micromolar activities in an ex vivo glycosaminoglycan (GAG) release assay in bovine cartilage together with low cellular permeability and suboptimal microsomal stability.

View Article and Find Full Text PDF

The first step in anaerobic toluene degradation is the addition of a fumarate cosubstrate to the methyl group of toluene, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. The bssDCAB genes code for the subunits of benzylsuccinate synthase (BssA, B and C) and an additional enzyme implicated in activating the enzyme by introducing the glycyl radical (BssD). Quantitation of the amounts of benzylsuccinate synthase and activating enzyme showed that both proteins are only synthesized in toluene-grown cells, and that the activating enzyme is present in about 14-fold lower amounts.

View Article and Find Full Text PDF