Publications by authors named "Birgitt Gutbier"

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers.

View Article and Find Full Text PDF

Unlabelled: Activin A strongly influences immune responses; yet, few studies have examined its role in infectious diseases. We measured serum activin A levels in two independent tuberculosis (TB) patient cohorts and in patients with pneumonia and sarcoidosis. Serum activin A levels were increased in TB patients compared to healthy controls, including those with positive tuberculin skin tests, and paralleled severity of disease, assessed by X-ray scores.

View Article and Find Full Text PDF

Dysfunction of endothelial cells (ECs) lining the inner surface of blood vessels are causative for a number of diseases. Hence, the ability to therapeutically modulate gene expression within ECs is of high therapeutic value in treating diseases such as those associated with lung edema. mRNAs formulated with lipid nanoparticles (LNPs) have emerged as a new drug modality to induce transient protein expression for modulating disease-relevant signal transduction pathways.

View Article and Find Full Text PDF

Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy.

View Article and Find Full Text PDF

Pneumonia is the most common cause of the acute respiratory distress syndrome (ARDS). Here, we identified loss of endothelial cystic fibrosis transmembrane conductance regulator (CFTR) as an important pathomechanism leading to lung barrier failure in pneumonia-induced ARDS. CFTR was down-regulated after infection ex vivo or in vivo in human or murine lung tissue, respectively.

View Article and Find Full Text PDF

Introduction: Inflammation is a major pathological feature of pulmonary arterial hypertension (PAH), particularly in the context of inflammatory conditions such as systemic sclerosis (SSc). The endothelin system and anti-endothelin A receptor (ET) autoantibodies have been implicated in the pathogenesis of PAH, and endothelin receptor antagonists are routinely used treatments for PAH. However, immunological functions of the endothelin B receptor (ET) remain obscure.

View Article and Find Full Text PDF

The transcription factor Krueppel-like factor (KLF) 4 fosters the pro-inflammatory immune response in macrophages and polymorphonuclear neutrophils (PMNs) when stimulated with , the main causative pathogen of community-acquired pneumonia (CAP). Here, we investigated the impact of KLF4 expression in myeloid cells such as macrophages and PMNs on inflammatory response and disease severity in a pneumococcal pneumonia mouse model and in patients admitted to hospital with CAP. We found that mice with a myeloid-specific knockout of KLF4 mount an insufficient early immune response with reduced levels of pro-inflammatory cytokines and increased levels of the anti-inflammatory cytokine interleukin (IL) 10 in bronchoalveolar lavage fluid and plasma and an impaired bacterial clearance from the lungs 24 hours after infection with .

View Article and Find Full Text PDF

Stroke-induced immunosuppression contributes to the development of stroke-associated pneumonia (SAP). Experiments in mice demonstrated that apoptosis of IFN-γ producing cells and reduced IFN-γ secretion resulted in impaired immune responses and the development of pneumonia after middle cerebral artery occlusion (MCAo). In the present study, we investigated the efficacy of intratracheal IFN-γ treatment to prevent SAP and demonstrated that modest benefits on pulmonary cytokine response in IFN-γ treated stroke mice did not prevent spontaneously developing infections and even slightly reduced bacterial clearance of aspirated pneumococci.

View Article and Find Full Text PDF

Background: Community-acquired pneumonia and associated sepsis cause high mortality despite antibiotic treatment. Uncontrolled inflammatory host responses contribute to the unfavorable outcome by driving lung and extrapulmonary organ failure. The complement fragment C5a holds significant proinflammatory functions and is associated with tissue damage in various inflammatory conditions.

View Article and Find Full Text PDF

In chronic obstructive pulmonary disease (COPD), acute exacerbations and emphysema development are characteristics for disease pathology. COPD is complicated by infectious exacerbations with acute worsening of respiratory symptoms with as one of the most frequent pathogens. Although cigarette smoke (CS) is the primary risk factor, additional molecular mechanisms for emphysema development induced by bacterial infections are incompletely understood.

View Article and Find Full Text PDF

Broad-spectrum antibiotics are widely used with patients in intensive care units (ICUs), many of whom develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa-induced pneumonia, the underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Rationale: During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2 activation by angiopoietin-1 reduces, whereas Tie2 blockade by angiopoietin-2 increases, inflammation and permeability during sepsis. The role of angiopoietin-1/-2 in pneumonia remains unidentified.

View Article and Find Full Text PDF

Descriptive histopathology of mouse models of pneumonia is essential in assessing the outcome of infections, molecular manipulations, or therapies in the context of whole lungs. Quantitative comparisons between experimental groups, however, have been limited to laborious stereology or ill-defined scoring systems that depend on the subjectivity of a more or less experienced observer. Here, we introduce self-learning digital image analyses that allow us to transform optical information from whole mouse lung sections into statistically testable data.

View Article and Find Full Text PDF

Objectives: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia.

View Article and Find Full Text PDF

Pneumonia may be caused by a wide range of pathogens and is considered the most common infectious cause of death in humans. Murine acute lung infection models mirror human pathologies in many aspects and contribute to our understanding of the disease and the development of novel treatment strategies. Despite progress in other fields of tissue imaging, histopathology remains the most conclusive and practical read out tool for the descriptive and semiquantitative evaluation of mouse pneumonia and therapeutic interventions.

View Article and Find Full Text PDF

Background: Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality worldwide. Despite effective antimicrobial therapy, CAP can induce pulmonary endothelial hyperpermeability resulting in life-threatening lung failure due to an exaggerated host-pathogen interaction. Treatment of acute lung injury is mainly supportive because key elements of inflammation-induced barrier disruption remain undetermined.

View Article and Find Full Text PDF

Bacterial pneumonia is a major cause of acute lung injury and acute respiratory distress syndrome, characterized by alveolar barrier disruption. NLRP3 is best known for its ability to form inflammasomes and to regulate IL-1β and IL-18 production in myeloid cells. Here we show that NLRP3 protects the integrity of the alveolar barrier in a mouse model of Streptococcus pneumoniae-induced pneumonia, and ex vivo upon treatment of isolated perfused and ventilated lungs with the purified bacterial toxin, pneumolysin.

View Article and Find Full Text PDF

In patients with chronic obstructive pulmonary disease (COPD), Moraxella catarrhalis infection of the lower airways is associated with chronic colonization and inflammation during stable disease and acute exacerbations. Chronic smoke exposure induces chronic inflammation and impairs mucociliary clearance, thus contributing to bacterial colonization of the lower airways in COPD patients. The human-specific carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 5, expressed in human airways, has been shown to contribute to epithelial colonization of CEACAM-binding pathogens.

View Article and Find Full Text PDF

Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV.

View Article and Find Full Text PDF

Surfactant protein A has been shown to enhance opsonization and clearance of Staphylococcus aureus in vitro. Here, the phagocytosis of alveolar S. aureus was investigated in vivo using intravital microscopy.

View Article and Find Full Text PDF

The cytosolic nucleotide oligomerization domain (NOD)-like receptors NOD1 and NOD2 are important contributors to the intracellular recognition of pathogens including Chlamydophila pneumoniae, but little is known about their influence on allergen-induced airway inflammation. In BALB/c mice, we observed that infection with C. pneumoniae before systemic sensitization with ovalbumin (OVA) and local OVA airway exposure diminished airway hyperresponsiveness (AHR).

View Article and Find Full Text PDF

Objectives: Pneumonia is associated with a high morbidity and mortality worldwide. Streptococcus pneumoniae remains the most common cause of pneumonia, and pneumococcal antibiotic resistance is increasing. The purified bacteriophage endolysin Cpl-1 rapidly and specifically kills pneumococci.

View Article and Find Full Text PDF

The majority of cases of community-acquired pneumonia are caused by Streptococcus pneumoniae and most studies on pneumococcal host interaction are based on cell culture or animal experiments. Thus, little is known about infections in human lung tissue. Cyclooxygenase-2 and its metabolites play an important regulatory role in lung inflammation.

View Article and Find Full Text PDF

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. In this study, we examine an innate immune recognition pathway that senses pneumococcal infection, triggers type I IFN production, and regulates RANTES production. We found that human and murine alveolar macrophages as well as murine bone marrow macrophages, but not alveolar epithelial cells, produced type I IFNs upon infection with S.

View Article and Find Full Text PDF