In genetic diagnostics, the emergence of a so-called "patent thicket" is imminent. Such an overlapping set of patent rights may have restrictive effects on further research and development of diagnostic tests, and the provision of clinical diagnostic services. Currently, two models that may facilitate access to and use of patented genetic inventions are attracting much debate in various national and international fora: patent pools and clearing houses.
View Article and Find Full Text PDFThere is increasing concern that overlapping patents in the field of genetics will create a costly and legally complex situation known as a patent thicket, which, along with the associated issues of accumulating royalty payments, can act as a disincentive for innovation. One potential means of preventing this is for the patent holders to enter into a so-called patent pool, such as those established in the electronics and telecommunications industries. Precedents for these also exist in the field of genetics, notably with the patents pertaining to the SARS genome.
View Article and Find Full Text PDFThe genetics community is increasingly concerned that patents might lead to restricted access to research and health care. We explore various measures that are designed to render patented genetic inventions accessible to further use in research, and to diagnosis and/or treatment. They include the often-recited research or experimental-use exemption, conventional one-to-one licensing and compulsory licensing, as well as patent pools and clearing-house mechanisms.
View Article and Find Full Text PDFThe trans-activation response (TAR) RNA stem-loop that occurs at the 5' end of HIV RNA transcripts is an important antiviral target and is the site of interaction of the HIV-1 Tat protein together with host cellular factors. Oligonucleotides and their analogues targeted to TAR are potential antiviral candidates. We have investigated a range of cell penetrating peptide (CPP) conjugates of a 16mer peptide nucleic acid (PNA) analogue targeted to the apical stem-loop of TAR and show that disulfide-linked PNA conjugates of two types of CPP (Transportan or a novel chimeric peptide R6-Penetratin) exhibit dose-dependent inhibition of Tat-dependent trans-activation in a HeLa cell assay when incubated for 24 h.
View Article and Find Full Text PDFIn the ongoing debate concerning DNA patents, there is a need for empirical data. We aim at creating this data set for DNA patents related to diagnostic genetic testing. To this end we developed two tools to facilitate this process.
View Article and Find Full Text PDFCellular uptake of a family of cationic cell-penetrating peptides (examples include Tat peptides and penetratin) have been ascribed in the literature to a mechanism that does not involve endocytosis. In this work we reevaluate the mechanisms of cellular uptake of Tat 48-60 and (Arg)(9). We demonstrate here that cell fixation, even in mild conditions, leads to the artifactual uptake of these peptides.
View Article and Find Full Text PDFRibonuclease mimics based on diimidazole derived constructs in combination with or without additional amino groups have been synthesized and conjugated to oligonucleotides. The imidazole moiety was used either unprotected, protected with a monomethoxytrityl group or a tert-butyloxy carbonyl group. Acylation reactions were carried out using the 3-acyl-1,3-thiazolidine-2-thione activation strategy.
View Article and Find Full Text PDFThe syntheses of monomeric nucleosides and 3'-O-phosphoramidite building blocks en route to alpha-L-ribo-configured locked nucleic acids (alpha-L-LNA), composed entirely of alpha-L-LNA monomers (alpha-L-ribo configuration) or of a mixture of alpha-L-LNA and DNA monomers (beta-D-ribo configuration), are described and the alpha-L-LNA oligomers are studied. Bicyclic 5-methylcytosin-1-yl and adenine-9-yl nucleoside derivatives have been prepared and the phosphoramidite approach has been used for the automated oligomerization leading to alpha-L-LNA oligomers. Binding studies revealed very efficient recognition of single-stranded DNA and RNA target oligonucleotide strands.
View Article and Find Full Text PDF