Publications by authors named "Birgit Strodel"

Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.

View Article and Find Full Text PDF

Plastic-degrading enzymes facilitate the biocatalytic recycling of poly(ethylene terephthalate) (PET), a significant synthetic polymer, and substantial progress has been made in utilizing PET hydrolases for industrial applications. To fully exploit the potential of these enzymes, a deeper mechanistic understanding followed by targeted protein engineering is essential. Through advanced molecular dynamics simulations and free energy analysis methods, we elucidated the complete pathway from the initial binding of two PET hydrolases-the thermophilic leaf-branch compost cutinase (LCC) and polyester hydrolase 1 (PES-H1)-to an amorphous PET substrate, ultimately leading to a PET chain entering the active site in a hydrolyzable conformation.

View Article and Find Full Text PDF

The aggregation of amyloid-β (Aβ) peptides, particularly Aβ, plays a key role in Alzheimer's disease pathogenesis. In this study, we investigate how dimerisation transforms the free energy surface (FES) of the Aβ monomer when it interacts with another Aβ peptide. We find that the monomer FES is a structurally inverted funnel with a disordered state at the global minimum.

View Article and Find Full Text PDF

Plastic-degrading enzymes, particularly poly(ethylene terephthalate) (PET) hydrolases, have garnered significant attention in recent years as potential eco-friendly solutions for recycling plastic waste. However, understanding of their PET-degrading activity and influencing factors remains incomplete, impeding the development of uniform approaches for enhancing PET hydrolases for industrial applications. A key aspect of PET hydrolase engineering is optimizing the PET-hydrolysis reaction by lowering the associated free energy barrier.

View Article and Find Full Text PDF

Peptide fibrillization is crucial in biological processes such as amyloid-related diseases and hormone storage, involving complex transitions between folded, unfolded, and aggregated states. We here employ light to induce reversible transitions between aggregated and nonaggregated states of a peptide, linked to the parathyroid hormone (PTH). The artificial light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) is embedded into a segment of PTH, the peptide PTH, to control aggregation, revealing position-dependent effects.

View Article and Find Full Text PDF

Purpose: Radiolabeled PSMA-ligands play a major role in today's nuclear medicine. Since approval of [Lu]Lu-PSMA-617 for therapy of metastatic prostate cancer, availability of Lu became bottleneck of supply due to the high demand. Recently, a theranostic PSMA-ligand, PSMA-GCK01, was developed which can be labeled either diagnostically with Tc or therapeutically with Re with both nuclides available from well-known generator systems.

View Article and Find Full Text PDF

Among the various factors controlling the amyloid aggregation process, the influences of ions on the aggregation rate and the resulting structures are important aspects to consider, which can be studied by molecular simulations. There is a wide variety of protein force fields and ion models, raising the question of which model to use in such studies. To address this question, we perform molecular dynamics simulations of Aβ , a fragment of the Alzheimer's amyloid β peptide, using different protein force fields, AMBER99SB-disp (A99-d) and CHARMM36m (C36m), and different ion parameters.

View Article and Find Full Text PDF

Guanylate-binding proteins (GBPs) are essential interferon-γ-activated large GTPases that play a crucial role in host defense against intracellular bacteria and parasites. While their protective functions rely on protein polymerization, our understanding of the structural intricacies of these multimerized states remains limited. To bridge this knowledge gap, we present dimer models for human GBP1 (hGBP1) and murine GBP2 and 7 (mGBP2 and mGBP7) using an integrative approach, incorporating the crystal structure of hGBP1's GTPase domain dimer, crosslinking mass spectrometry, small-angle X-ray scattering, protein-protein docking, and molecular dynamics simulations.

View Article and Find Full Text PDF

The amyloid-β (Aβ) peptide is associated with the development of Alzheimer's disease and is known to form highly neurotoxic prefibrillar oligomeric aggregates, which are difficult to study due to their transient, low-abundance, and heterogeneous nature. To obtain high-resolution information about oligomer structure and dynamics as well as relative populations of assembly states, we here employ a combination of native ion mobility mass spectrometry and molecular dynamics simulations. We find that the formation of Aβ oligomers is dependent on the presence of a specific β-hairpin motif in the peptide sequence.

View Article and Find Full Text PDF

The aggregation of amyloid-β (Aβ) peptides, particularly of Aβ1-42, has been linked to the pathogenesis of Alzheimer's disease. In this study, we focus on the conformational change of Aβ1-42 in the presence of glycosaminoglycans (GAGs) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids using molecular dynamics simulations. We analyze the conformational changes that occur in Aβ by extracting the key structural features that are then used to generate transition networks.

View Article and Find Full Text PDF

Polyglutamine expansion at the N-terminus of the huntingtin protein exon 1 (Htt-ex1) is closely associated with a number of neurodegenerative diseases, which result from the aggregation of the increased polyQ repeat. However, the underlying structures and aggregation mechanism are still poorly understood. We performed microsecond-long all-atom molecular dynamics simulations to study the folding and dimerization of Htt-ex1 (about 100 residues) with non-pathogenic and pathogenic polyQ lengths, and uncovered substantial differences.

View Article and Find Full Text PDF

During the replication process of SARS-CoV-2, the main protease of the virus [3-chymotrypsin-like protease (3CL)] plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CL as an attractive drug target to combat COVID-19. We describe a novel and efficient next-generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CL targeting peptide ligands that inhibit the 3CL protease, in a competitive or noncompetitive mode, in the low μM range.

View Article and Find Full Text PDF

Guanylate-binding proteins (GBPs) are a group of GTPases that are induced by interferon-[Formula: see text] and are crucial components of cell-autonomous immunity against intracellular pathogens. Here, we examine murine GBP2 (mGBP2), which we have previously shown to be an essential effector protein for the control of Toxoplasma gondii replication, with its recruitment through the membrane of the parasitophorous vacuole and its involvement in the destruction of this membrane likely playing a role. The overall aim of our work is to provide a molecular-level understanding of the mutual influences of mGBP2 and the parasitophorous vacuole membrane.

View Article and Find Full Text PDF

Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided.

View Article and Find Full Text PDF

Human C-C motif ligand 16 (CCL16) is a chemokine that is distinguished by a large cleavable C-terminal extension of unknown significance. Conflicting data have been reported concerning its tissue distribution and modulation of expression, rendering the biological function of CCL16 enigmatic. Here, we report an integrated approach to the characterisation of this chemokine, including a re-assessment of its expression characteristics as well as a biophysical investigation with respect to its structure and dynamics.

View Article and Find Full Text PDF

Thermophilic polyester hydrolases (PES-H) have recently enabled biocatalytic recycling of the mass-produced synthetic polyester polyethylene terephthalate (PET), which has found widespread use in the packaging and textile industries. The growing demand for efficient PET hydrolases prompted us to solve high-resolution crystal structures of two metagenome-derived enzymes (PES-H1 and PES-H2) and notably also in complex with various PET substrate analogues. Structural analyses and computational modeling using molecular dynamics simulations provided an understanding of how product inhibition and multiple substrate binding modes influence key mechanistic steps of enzymatic PET hydrolysis.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) do not fold into a unique three-dimensional structure but sample different configurations of different probabilities that further change with the surrounding of the IDPs. The structural heterogeneity and dynamics of IDPs pose a challenge for the characterization of their structures by experimental techniques only. Molecular dynamics (MD) simulations provide a powerful complement to experimental approaches for that purpose.

View Article and Find Full Text PDF

Simulating the process of amyloid aggregation with atomic detail is a challenging task for various reasons. One of them is that it is difficult to parametrise a force field such that all protein states ranging from the folded through the unfolded to the aggregated state are represented with the same level of accuracy. Here, we test whether the consideration of electronic polarisability improves the description of the different states of Aβ.

View Article and Find Full Text PDF

Sickle cell disease is a hemoglobinopathy resulting from a point mutation from glutamate to valine at position six of the β-globin chains of hemoglobin. This mutation gives rise to pathological aggregation of the sickle hemoglobin and, as a result, impaired oxygen binding, misshapen and short-lived erythrocytes, and anemia. We aim to understand the structural effects caused by the single Glu6Val mutation leading to protein aggregation.

View Article and Find Full Text PDF

The islet amyloid polypeptide (IAPP) is the main constituent of the amyloid fibrils found in the pancreas of type 2 diabetes patients. The aggregation of IAPP is known to cause cell death, where the cell membrane plays a dual role: being a catalyst of IAPP aggregation and being the target of IAPP toxicity. Using ATR-FTIR spectroscopy, transmission electron microscopy, and molecular dynamics simulations we investigate the very first molecular steps following IAPP binding to a lipid membrane.

View Article and Find Full Text PDF

Protein disorder and aggregation play significant roles in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The end products of the aggregation process in these diseases are highly structured amyloid fibrils. Though in most cases, small, soluble oligomers formed during amyloid aggregation are the toxic species.

View Article and Find Full Text PDF

There is mounting evidence that Alzheimer's disease progression and severity are linked to neuronal membrane damage caused by aggregates of the amyloid-β (Aβ) peptide. However, the detailed mechanism behind the membrane damage is not well understood yet. Recently, the lipid-chaperone hypothesis has been put forward, based on which the formation of complexes between Aβ and free lipids enables an easy insertion of Aβ into membranes.

View Article and Find Full Text PDF

The increasing recognition of the biochemical importance of glycosaminoglycans (GAGs) has in recent times made them the center of attention of recent research investigations. It became evident that subtle conformational factors play an important role in determining the relationship between the chemical composition of GAGs and their activity. Therefore, a thorough understanding of their structural flexibility is needed, which is addressed in this work by means of all-atom molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure but do exhibit some dynamical and structural ordering. The structural plasticity of IDPs indicates that entropy-driven motions are crucial for their function. Many IDPs undergo function-related disorder-to-order transitions upon by their interaction with specific binding partners.

View Article and Find Full Text PDF