Background: The volatile anaesthetic sevoflurane protects cardiac tissue from reoxygenation/reperfusion. Mitochondria play an essential role in conditioning. We aimed to investigate how sevoflurane and its primary metabolite hexafluoroisopropanol (HFIP) affect necrosis, apoptosis, and reactive oxygen species formation in cardiomyocytes upon hypoxia/reoxygenation injury.
View Article and Find Full Text PDFBackground: The effect of anesthetic drugs on cancer outcomes remains unclear. This trial aimed to assess postoperative circulating tumor cell counts-an independent prognostic factor for breast cancer-to determine how anesthesia may indirectly affect prognosis. It was hypothesized that patients receiving sevoflurane would have higher postoperative tumor cell counts.
View Article and Find Full Text PDFBackground: Severe neurological impairment is a problem after subarachnoid haemorrhage (SAH). Although volatile anaesthetics, such as sevoflurane, have demonstrated protective properties in many organs, their use in cerebral injury is controversial. Cerebral vasodilation may lead to increased intracranial pressure (ICP), but at the same time volatile anaesthetics are known to stabilise the SAH-injured endothelial barrier.
View Article and Find Full Text PDFBackground: Randomized controlled trials (RCTs) data demonstrate that sevoflurane postconditioning improves clinical outcomes of liver resection with inflow occlusion, presumably due to hepatocyte protection from ischemic injury. However, mechanisms remain unclear. This study examines liver biopsy samples obtained in an RCT of sevoflurane postconditioning to test the hypothesis that sevoflurane attenuates hepatocyte apoptosis.
View Article and Find Full Text PDFBackground: After cerebral injury blood-brain barrier disruption significantly impairs brain homeostasis. Volatile anesthetics have been shown to be protective in ischemia-reperfusion injury scenarios. Their impact on brain endothelial cells after hypoxia-reoxygenation (H/R) has not yet been studied in detail.
View Article and Find Full Text PDFBackground: After portal vein ligation of 1 side of the liver, the other side regenerates at a slow rate. This slow growth may be accelerated to rapid growth by adding a transection between the 2 sides, i.e.
View Article and Find Full Text PDFBackground: Tissue hypoperfusion and inflammation in sepsis can lead to organ failure including kidney and liver. In sepsis, mortality of acute kidney injury increases by more than 50%. Which type of volume replacement should be used is still an ongoing debate.
View Article and Find Full Text PDFAim: Magnetic field guided drug targeting holds promise for more effective cancer treatment. Intravascular application of magnetic nanoparticles, however, bears the risk of potentially important, yet poorly understood side effects, such as off-target accumulation in endothelial cells.
Materials & Methods: Here, we investigated the influence of shear stress (0-3.
Introduction: Severe sepsis is associated with approximately 50% mortality and accounts for tremendous healthcare costs. Most patients require ventilatory support and propofol is commonly used to sedate mechanically ventilated patients. Volatile anesthetics have been shown to attenuate inflammation in a variety of different settings.
View Article and Find Full Text PDFThe effects of an exposure to three mass-produced metal oxide nanoparticles-similar in size and specific surface area but different in redox activity and solubility-were studied in rat alveolar macrophages (MAC) and epithelial cells (AEC). We hypothesized that the cell response depends on the particle redox activity and solubility determining the amount of reactive oxygen species formation (ROS) and subsequent inflammatory response. MAC and AEC were exposed to different amounts of Mn3O4 (soluble, redox-active), CeO2 (insoluble, redox-active), and TiO2 (insoluble, redox-inert) up to 24 h.
View Article and Find Full Text PDFIntravascular application of magnetic nanocarriers is a critical step in the development of new therapeutic strategies, including magnetic drug targeting or hyperthermia. However, injection of particulate matter bears the intrinsic risk of contact activation of the blood coagulation cascade. In this work, we use point-of-care assays to study coagulation dynamics and clotting parameters in blood samples exposed to relevant concentrations of surface-functionalized carbon-coated iron carbide nanomagnets using unmodified nanomagnets and poly(ethylene)glycol-functionalized nanomagnets with different end-groups, including -OCH, -NH, -COOH, -IgG, and -ProteinA-protected-IgG (-IgG-ProtA).
View Article and Find Full Text PDFThe use of hydroxyethyl starch (HES) in sepsis has been shown to increase mortality and acute kidney injury. However, the knowledge of the exact mechanism by which several fluids, especially starch preparations may impair end-organ function particularly in the kidney, is still missing. The aim of this study was to measure the influence of different crystalloid and colloid fluid compositions on the inflammatory response in the kidney, the liver and the lung using a rodent model of acute endotoxemia.
View Article and Find Full Text PDFThis work describes a magnetic separation-based approach using polymyxin B-functionalized metal alloy nanomagnets for the rapid elimination of endotoxins from human blood in vitro and functional assays to evaluate the biological relevance of the blood purification process. Playing a central role in gram-negative sepsis, bacteria-derived endotoxins are attractive therapeutic targets. However, both direct endotoxin detection in and removal from protein-rich fluids remains challenging.
View Article and Find Full Text PDFBackground: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products.
Methods: The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined.
Aims: Nanomagnets with metal cores have recently been shown to be promising candidates for magnetic drug delivery due to higher magnetic moments compared with commonly used metal oxides. Successful application strongly relies on a safe implementation that goes along with detailed knowledge of interactions and effects that nanomagnets might impart once entering the body.
Materials & Methods: In this work, we put a particular focus on the interactions of ultra-strong metal nanomagnets (≥ three-times higher in magnetization compared with oxide nanoparticles) within the vascular compartment.
Volatile anesthetics are known to attenuate inflammatory response and tissue damage markers in acute organ injury. It is unclear whether these beneficial effects of volatile anesthetics are mediated by the ether basic structure or by characteristics of their halogenations. We describe in an in vitro model of acute inflammation in pulmonary cells that halogenation (fluorinated carbon groups) is responsible for the immunomodulatory effects.
View Article and Find Full Text PDFBackground: Acute renal failure is a frequent complication of sepsis. Hydroxyethyl starch (HES) is widely used in the treatment of such patients. However, the effect of HES on renal function during sepsis remains controversial.
View Article and Find Full Text PDFBackground: Endotoxin-induced lung injury is a useful experimental system for the characterization of immunopathologic mechanisms in acute lung injury. Although alveolar epithelial cells (AEC) are directly exposed to volatile anesthetics, there is limited information about the effect of anesthetics on these cells. In this study we investigated the effect of pretreatment with the inhaled anesthetic sevoflurane on lipopolysaccharide (LPS)-injured AEC.
View Article and Find Full Text PDFHeat-shock proteins are highly immunogenic. Complexed with an antigen, they act as adjuvants, inducing a humoral and cellular immune response against both the antigen and the chaperone. In this study, we produced an Hsp70-supported vaccine to induce the generation of antibodies against amyloid-beta (Abeta) peptides, the major constituent of beta-amyloid plaques in Alzheimer's disease.
View Article and Find Full Text PDFGrpE is the nucleotide-exchange factor of the DnaK chaperone system. Escherichia coli cells with the classical temperature-sensitive grpE280 phenotype do not grow under heat-shock conditions and have been found to carry the G122D point mutation in GrpE. To date, the molecular mechanism of this defect has not been investigated in detail.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2006
Respiratory epithelial cells play a crucial role in the inflammatory response in endotoxin-induced lung injury, an experimental model for acute lung injury. To determine the role of epithelial cells in the upper respiratory compartment in the inflammatory response to endotoxin, we exposed tracheobronchial epithelial cells (TBEC) to lipopolysaccharide (LPS). Expression of inflammatory mediators was analyzed, and the biological implications were assessed using chemotaxis and adherence assays.
View Article and Find Full Text PDF